Stochastic electrodynamics. IV. Transitions in the perturbed harmonic oscillator-zero-point field system

Foundations of Physics 14 (1):41-63 (1984)
  Copy   BIBTEX

Abstract

In this fourth paper in a series on stochastic electrodynamics (SED), the harmonic oscillator-zero-point field system in the presence of an arbitrary applied classical radiation field is studied further. The exact closed-form expressions are found for the time-dependent probability that the oscillator is in the nth eigenstate of the unperturbed SED Hamiltonian H 0 , the same H 0 as that of ordinary quantum mechanics. It is shown that an eigenvalue of H 0 is the average energy that the oscillator would have if its wave function could be just the corresponding eigenstate. The level shift for each unperturbed eigenvalue is found and shown to be unobservable for a different reason than in the corresponding QED treatment. Perturbation theory is applied to the SED Schrödinger equation to derive first-order transition rates for spontaneous emission and resonance absorption. The results agree with those of quantum electrodynamics, but the mathematics is strikingly different. It is shown that SED demands discarding the ideas of quantized energies, photons, and completeness of the Schrödinger equation, Finally, an intuitive physical SED model is suggested for the photoeffect and for Clauser's (2) coincidence experiment

Links

PhilArchive



    Upload a copy of this work     Papers currently archived: 92,611

External links

Setup an account with your affiliations in order to access resources via your University's proxy server

Through your library

Similar books and articles

Non-Heisenberg states of the harmonic oscillator.K. Dechoum & H. M. FranÇa - 1995 - Foundations of Physics 25 (11):1599-1620.
Quantum Theory and Linear Stochastic Electrodynamics.L. De la Peña & A. M. Cetto - 2001 - Foundations of Physics 31 (12):1703-1731.
Does quantum mechanics accept a stochastic support?L. de la Peña & A. M. Cetto - 1982 - Foundations of Physics 12 (10):1017-1037.

Analytics

Added to PP
2013-11-22

Downloads
44 (#364,497)

6 months
10 (#280,381)

Historical graph of downloads
How can I increase my downloads?