Binding Mechanisms in Visual Perception and Their Link With Neural Oscillations: A Review of Evidence From tACS [Book Review]

Frontiers in Psychology 12 (2021)
  Copy   BIBTEX

Abstract

Neurophysiological studies in humans employing magneto- and electro- encephalography increasingly suggest that oscillatory rhythmic activity of the brain may be a core mechanism for binding sensory information across space, time, and object features to generate a unified perceptual representation. To distinguish whether oscillatory activity is causally related to binding processes or whether, on the contrary, it is a mere epiphenomenon, one possibility is to employ neuromodulatory techniques such as transcranial alternating current stimulation. tACS has seen a rising interest due to its ability to modulate brain oscillations in a frequency-dependent manner. In the present review, we critically summarize current tACS evidence for a causal role of oscillatory activity in spatial, temporal, and feature binding in the context of visual perception. For temporal binding, the emerging picture supports a causal link with the power and the frequency of occipital alpha rhythms ; however, there is no consistent evidence on the causal role of the phase of occipital tACS. For feature binding, the only study available showed a modulation by occipital alpha tACS. The majority of studies that successfully modulated oscillatory activity and behavioral performance in spatial binding targeted parietal areas, with the main rhythms causally linked being the theta and beta frequency bands. On the other hand, spatio-temporal binding has been directly modulated by parieto-occipital gamma and alpha tACS, suggesting a potential role of cross-frequency coupling when binding across space and time. Nonetheless, negative or partial results have also been observed, suggesting methodological limitations that should be addressed in future research. Overall, the emerging picture seems to support a causal role of brain oscillations in binding processes and, consequently, a certain degree of plasticity for shaping binding mechanisms in visual perception, which, if proved to have long lasting effects, can find applications in different clinical populations.

Links

PhilArchive



    Upload a copy of this work     Papers currently archived: 92,907

External links

Setup an account with your affiliations in order to access resources via your University's proxy server

Through your library

Similar books and articles

Temporal binding and the perception/cognition boundary.Christoph Hoerl - 2019 - In Adrian Bardon, Valtteri Arstila, Sean Power & Argiro Vatakis (eds.), The Illusions of Time: Philosophical and Psychological Essays on Timing and Time Perception. Palgrave Macmillan. pp. 275-287.
(Dis)solving the binding problem.James W. Garson - 2001 - Philosophical Psychology 14 (4):381 – 392.
Unifying by binding: Will binding really bind?Jörn Diedrichsen & Eliot Hazeltine - 2001 - Behavioral and Brain Sciences 24 (5):884-885.
The Identity‐Location Binding Problem.Piers D. L. Howe & Adam Ferguson - 2015 - Cognitive Science 39 (7):1622-1645.

Analytics

Added to PP
2021-03-22

Downloads
5 (#1,557,834)

6 months
3 (#1,037,581)

Historical graph of downloads
How can I increase my downloads?