What is Quantum Mechanics? A Minimal Formulation

Foundations of Physics 48 (3):295-332 (2018)
  Copy   BIBTEX

Abstract

This paper presents a minimal formulation of nonrelativistic quantum mechanics, by which is meant a formulation which describes the theory in a succinct, self-contained, clear, unambiguous and of course correct manner. The bulk of the presentation is the so-called “microscopic theory”, applicable to any closed system S of arbitrary size N, using concepts referring to S alone, without resort to external apparatus or external agents. An example of a similar minimal microscopic theory is the standard formulation of classical mechanics, which serves as the template for a minimal quantum theory. The only substantive assumption required is the replacement of the classical Euclidean phase space by Hilbert space in the quantum case, with the attendant all-important phenomenon of quantum incompatibility. Two fundamental theorems of Hilbert space, the Kochen–Specker–Bell theorem and Gleason’s theorem, then lead inevitably to the well-known Born probability rule. For both classical and quantum mechanics, questions of physical implementation and experimental verification of the predictions of the theories are the domain of the macroscopic theory, which is argued to be a special case or application of the more general microscopic theory.

Links

PhilArchive



    Upload a copy of this work     Papers currently archived: 92,168

External links

Setup an account with your affiliations in order to access resources via your University's proxy server

Through your library

Similar books and articles

On the Classical Limit of Quantum Mechanics.Valia Allori & Nino Zanghì - 2008 - Foundations of Physics 10.1007/S10701-008-9259-4 39 (1):20-32.
Bohmian insights into quantum chaos.James T. Cushing - 2000 - Philosophy of Science 67 (3):445.
An Axiomatic Basis for Quantum Mechanics.Gianni Cassinelli & Pekka Lahti - 2016 - Foundations of Physics 46 (10):1341-1373.
Interpreting Probabilities in Quantum Field Theory and Quantum Statistical Mechanics.Laura Ruetsche & John Earman - 2011 - In Claus Beisbart & Stephan Hartmann (eds.), Probabilities in Physics. Oxford University Press. pp. 263.
Schwinger and the ontology of quantum field theory.Edward MacKinnon - 2007 - Foundations of Science 12 (4):295-323.

Analytics

Added to PP
2018-02-21

Downloads
36 (#445,442)

6 months
8 (#367,748)

Historical graph of downloads
How can I increase my downloads?