Complexity of calcium signaling in synaptic spines

Bioessays 24 (12):1130-1144 (2002)
  Copy   BIBTEX

Abstract

Long‐term potentiation and long‐term depression are thought to be cellular mechanisms contributing to learning and memory. Although the physiological phenomena have been well characterized, little consensus of their underlying molecular mechanisms has emerged. One reason for this may be the under‐appreciated complexity of the signaling pathways that can arise if key signaling molecules are discretely localized within the synapse. Recent findings suggest an unanticipated degree of structural organization at the synapse, and improved methods in cellular imaging of living tissue have provided much‐needed information about the intracellular dynamics of Ca2+, thought to be critical for both LTP and LTD. In this review, we briefly summarize some of these developments, and show that a more complete understanding of cellular signaling depends on the successful integration of traditional biochemistry and molecular biology with the spatial and temporal details of synaptic ultrastructure. Biophysically realistic computer simulations can have an important role in bridging these disciplines. BioEssays 24:1130–1144, 2002. © 2002 Wiley‐Periodicals, Inc.

Links

PhilArchive



    Upload a copy of this work     Papers currently archived: 92,197

External links

Setup an account with your affiliations in order to access resources via your University's proxy server

Through your library

Similar books and articles

Adenylyl cyclase, G proteins, and synaptic plasticity.Mark M. Rasenick - 1995 - Behavioral and Brain Sciences 18 (3):484-485.
Sleep and synaptic homeostasis.Giulio Tononi & Chiara Cirelli - 2005 - Behavioral and Brain Sciences 28 (1):85-85.

Analytics

Added to PP
2013-11-23

Downloads
25 (#636,202)

6 months
4 (#797,974)

Historical graph of downloads
How can I increase my downloads?

Citations of this work

No citations found.

Add more citations