Plastic slip distribution in two-phase laminate microstructures: dislocation-based versus generalized-continuum approaches

Philosophical Magazine 83 (2):245-276 (2003)
  Copy   BIBTEX

Abstract

The size-dependent mechanical response of a simple model microstructure is investigated using continuum dislocation-based, Cosserat and strain-gradient models of crystal plasticity. The governing equations and closed-form analytical solutions for plastic slip and lattice rotation are directly compared. The microstructure consists of a periodic succession of hard and soft layers, subjected to single glide perpendicular to the layers. In the dislocation-based approach, inhomogeneous plastic deformation and lattice rotation are shown to develop in the soft channels, either because of bowing of dislocations or owing to pile-up formation. The generalized continuum non-local models are found to be able to reproduce the plastic slip and lattice rotation distribution. In particular, a correspondence was found between the generalized-continuum results and line tension effects; the additional or higher- order balance equations introduced in the non-local models turn out to be the counterparts of the equilibrium equation for bowed dislocations. The relevance and possible physical interpretation of additional or higher-order interface conditions responsible for the inhomogeneous distribution of plastic slip and lattice rotations are discussed

Links

PhilArchive



    Upload a copy of this work     Papers currently archived: 92,261

External links

Setup an account with your affiliations in order to access resources via your University's proxy server

Through your library

Similar books and articles

Analytics

Added to PP
2015-02-07

Downloads
3 (#1,715,951)

6 months
1 (#1,478,781)

Historical graph of downloads
How can I increase my downloads?