The role of idealizations in the Aharonov–Bohm effect

Synthese 196 (5):1991-2019 (2019)
  Copy   BIBTEX

Abstract

On standard accounts of scientific theorizing, the role of idealizations is to facilitate the analysis of some real world system by employing a simplified representation of the target system, raising the obvious worry about how reliable knowledge can be obtained from inaccurate descriptions. The idealizations involved in the Aharonov–Bohm effect do not, it is claimed, fit this paradigm; rather the target system is a fictional system characterized by features that, though physically possible, are not realized in the actual world. The point of studying such a fictional system is to understand the foundations of quantum mechanics and how its predictions depart from those of classical mechanics. The original worry about the use of idealizations is replaced by a new one; namely, how can actual world experiments serve to confirm the AB effect if it concerns the behavior of a fictional system? Struggle with this issue helps to account for the fact that almost three decades elapsed before a consensus emerged that the predicted AB effect had received solid experimental support. Standard accounts of idealizations tout the role they play in making tractable the analysis of the target system; by contrast, the idealizations involved in the AB effect make its analysis both conceptually and mathematically challenging. The idealizations required for the AB effect are also responsible for the existence of unitarily inequivalent representations of the canonical commutation relations and of the current algebra, representations which an observer confined to the electron’s configuration space could invoke to ‘explain’ AB-type effect without the need to posit a hidden magnetic field. The goal of this paper is to bring to the attention of the philosophers of science these and other aspects of the AB effect which are neglected or inadequately treated in literature.

Links

PhilArchive



    Upload a copy of this work     Papers currently archived: 91,846

External links

Setup an account with your affiliations in order to access resources via your University's proxy server

Through your library

Similar books and articles

Infinite idealizations in physics.Elay Shech - 2018 - Philosophy Compass 13 (9):e12514.
Does the Aharonov–Bohm Effect Exist?Timothy H. Boyer - 2000 - Foundations of Physics 30 (6):893-905.
Nonlocality and the aharonov-Bohm effect.Richard Healey - 1997 - Philosophy of Science 64 (1):18-41.
Idealizations and Understanding: Much Ado About Nothing?Emily Sullivan & Kareem Khalifa - 2019 - Australasian Journal of Philosophy 97 (4):673-689.
Why is the transference theory of causation insuffcient? The challenge of the Aharonov-Bohm effect.Vincent Ardourel & Alexandre Guay - 2018 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 63:12-23.

Analytics

Added to PP
2019-05-01

Downloads
28 (#569,150)

6 months
6 (#518,648)

Historical graph of downloads
How can I increase my downloads?

References found in this work

Interpreting Quantum Theories: The Art of the Possible.Laura Ruetsche - 2011 - Oxford, GB: Oxford University Press UK.
Three Kinds of Idealization.Michael Weisberg - 2007 - Journal of Philosophy 104 (12):639-659.
Models in physics.Michael Redhead - 1980 - British Journal for the Philosophy of Science 31 (2):145-163.

View all 10 references / Add more references