Embedding FD(ω) into \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{P}_s}$$\end{document} densely [Book Review]

Archive for Mathematical Logic 46 (7-8):649-664 (2008)
  Copy   BIBTEX

Abstract

Let \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{P}_s}$$\end{document} be the lattice of degrees of non-empty \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\Pi_1^0}$$\end{document} subsets of 2ω under Medvedev reducibility. Binns and Simpson proved that FD(ω), the free distributive lattice on countably many generators, is lattice-embeddable below any non-zero element in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{P}_s}$$\end{document}. Cenzer and Hinman proved that \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{P}_s}$$\end{document} is dense, by adapting the Sacks Preservation and Sacks Coding Strategies used in the proof of the density of the c.e. Turing degrees. With a construction that is a modification of the one by Cenzer and Hinman, we improve on the result of Binns and Simpson by showing that for any \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{U} < _s \mathcal{V}}$$\end{document}, we can lattice embed FD(ω) into \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{P}_s}$$\end{document} strictly between \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${deg_s(\mathcal{U})}$$\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${deg_s({\mathcal V})}$$\end{document}. We also note that, in contrast to the infinite injury in the proof of the Sacks Density Theorem, in our proof all injury is finite, and that this is also true for the proof of Cenzer and Hinman, if a straightforward simplification is made.

Links

PhilArchive



    Upload a copy of this work     Papers currently archived: 92,283

External links

Setup an account with your affiliations in order to access resources via your University's proxy server

Through your library

Similar books and articles

The Unchangeable Judicial Formats.Paul Hoven - 2011 - Argumentation 25 (4):499-511.
The Unchangeable Judicial Formats.Paul van den Hoven - 2011 - Argumentation 25 (4):499-511.

Analytics

Added to PP
2013-12-30

Downloads
6 (#1,466,250)

6 months
2 (#1,206,195)

Historical graph of downloads
How can I increase my downloads?

Citations of this work

No citations found.

Add more citations

References found in this work

Mass problems and randomness.Stephen G. Simpson - 2005 - Bulletin of Symbolic Logic 11 (1):1-27.
A splitting theorem for the Medvedev and Muchnik lattices.Stephen Binns - 2003 - Mathematical Logic Quarterly 49 (4):327.
Mass problems and almost everywhere domination.Stephen G. Simpson - 2007 - Mathematical Logic Quarterly 53 (4):483-492.

Add more references