Stochastic spatial models of plant diseases

Abstract

I present three models of plant--pathogen interactions. The models are stochastic and spatially explicit at the scale of individual plants. For each model, I use a version of pair approximation or moment closure along with a separation of timescales argument to determine the effects of spatial clustering on threshold structure. By computing the spatial structure early in an invasion, I find explicit corrections to mean field theory. In the first chapter, I present a lattice model of a disease that is not directly lethal to its host, but affects its ability to compete with neighbors. I use a type of pair approximation to determine conditions for invasions and coexistence. In the second chapter, I study a basic SIR epidemic point process in continuous space. I implement a multiplicative moment closure scheme to compute the threshold transmission rate as a function of spatial parameters. In the final chapter, I model the evolution of pathogen resistance when two plant species share a pathogen. Evolution may lead to non--resistance by a host that finds the disease to be a useful weapon. I use a lattice model with the ordinary pair approximation assumption to study phenotypic evolution via repeated invasions by novel strains.

Links

PhilArchive



    Upload a copy of this work     Papers currently archived: 92,197

External links

Setup an account with your affiliations in order to access resources via your University's proxy server

Through your library

  • Only published works are available at libraries.

Similar books and articles

Quantum stochastic models.Stanley Gudder - 1992 - Foundations of Physics 22 (6):839-852.
On the information-processing demands of spatial reasoning.Sergio Morra - 2001 - Thinking and Reasoning 7 (4):347 – 365.

Analytics

Added to PP
2017-06-17

Downloads
0

6 months
0

Historical graph of downloads

Sorry, there are not enough data points to plot this chart.
How can I increase my downloads?

Citations of this work

No citations found.

Add more citations

References found in this work

No references found.

Add more references