Results for 'wave function ontology'

1000+ found
Order:
  1. Wave Function Ontology.Bradley Monton - 2002 - Synthese 130 (2):265-277.
    I argue that the wave function ontology for quantum mechanics is an undesirable ontology. This ontology holds that the fundamental space in which entities evolve is not three-dimensional, but instead 3N-dimensional, where N is the number of particles standardly thought to exist in three-dimensional space. I show that the state of three-dimensional objects does not supervene on the state of objects in 3N-dimensional space. I also show that the only way to guarantee the existence of (...)
    Direct download (7 more)  
     
    Export citation  
     
    Bookmark   61 citations  
  2. Bohmian mechanics without wave function ontology.Albert Solé - 2013 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 44 (4):365-378.
    In this paper, I critically assess different interpretations of Bohmian mechanics that are not committed to an ontology based on the wave function being an actual physical object that inhabits configuration space. More specifically, my aim is to explore the connection between the denial of configuration space realism and another interpretive debate that is specific to Bohmian mechanics: the quantum potential versus guidance approaches. Whereas defenders of the quantum potential approach to the theory claim that Bohmian mechanics (...)
    Direct download (6 more)  
     
    Export citation  
     
    Bookmark   20 citations  
  3. Ontological Reduction and the Wave Function Ontology.Alyssa Ney - 2013 - In Alyssa Ney & David Z. Albert (eds.), The Wave Function: Essays on the Metaphysics of Quantum Mechanics. Oxford University Press. pp. 168-183.
  4. Ontology of the wave function and the many-worlds interpretation.Lev Vaidman (ed.) - 2019 - Cambridge University Press, UK.
    It is argued that the many-worlds interpretation is by far the best interpretation of quantum mechanics. The key points of this view are viewing the wave functions of worlds in three dimensions and understanding probability through self-locating uncertainty.
    Direct download (6 more)  
     
    Export citation  
     
    Bookmark   6 citations  
  5. The Wave Function and Particle Ontology.Shan Gao - 2014
    In quantum mechanics, the wave function of a N-body system is a mathematical function defined in a 3N-dimensional configuration space. We argue that wave function realism implies particle ontology when assuming: (1) the wave function of a N-body system describes N physical entities; (2) each triple of the 3N coordinates of a point in configuration space that relates to one physical entity represents a point in ordinary three-dimensional space. Moreover, the motion of (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  6. The meaning of the wave function: in search of the ontology of quantum mechanics.Shan Gao - 2017 - New York, NY, USA: Cambridge University Press.
    The meaning of the wave function has been a hot topic of debate since the early days of quantum mechanics. Recent years have witnessed a growing interest in this long-standing question. Is the wave function ontic, directly representing a state of reality, or epistemic, merely representing a state of knowledge, or something else? If the wave function is not ontic, then what, if any, is the underlying state of reality? If the wave (...) is indeed ontic, then exactly what physical state does it represent? In this book, I aim to make sense of the wave function in quantum mechanics and find the ontological content of the theory. The book can be divided into three parts. The first part addresses the question of the nature of the wave function. After giving a comprehensive and critical review of the competing views of the wave function, I present a new argument for the ontic view in terms of protective measurements. In addition, I also analyze the origin of the wave function by deriving the free Schroedinger equation. The second part analyzes the ontological meaning of the wave function. I propose a new ontological interpretation of the wave function in terms of random discontinuous motion of particles, and give two main arguments supporting this interpretation. The third part investigates whether the suggested quantum ontology is complete in accounting for our definite experience and whether it needs to be revised in the relativistic domain. (shrink)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   22 citations  
  7.  58
    The Wave Function: Essays on the Metaphysics of Quantum Mechanics.Alyssa Ney & David Albert (eds.) - 2013 - , US: Oxford University Press USA.
    This is a new volume of original essays on the metaphysics of quantum mechanics. The essays address questions such as: What fundamental metaphysics is best motivated by quantum mechanics? What is the ontological status of the wave function? Does quantum mechanics support the existence of any other fundamental entities, e.g. particles? What is the nature of the fundamental space of quantum mechanics? What is the relationship between the fundamental ontology of quantum mechanics and ordinary, macroscopic objects like (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   83 citations  
  8.  14
    The meaning of the wave function: in search of the ontology of quantum mechanics.Shan Gao - 2017 - New York, NY, USA: Cambridge University Press.
    Quantum mechanics and experience -- The wave function: ontic vs epistemic -- The nomological view -- Reality of the wave function -- Origin of the Schrödinger equation -- The ontology of quantum mechanics (I) -- The ontology of quantum mechanics (II) -- Implications for solving the measurement problem -- Quantum ontology and relativity.
    Direct download  
     
    Export citation  
     
    Bookmark   3 citations  
  9.  31
    The Wave Function as Matter Density: Ontological Assumptions and Experimental Consequences.Markku Jääskeläinen - 2015 - Foundations of Physics 45 (6):591-610.
    The wavefunction is the central mathematical entity of quantum mechanics, but it still lacks a universally accepted interpretation. Much effort is spent on attempts to probe its fundamental nature. Here I investigate the consequences of a matter ontology applied to spherical masses of constant bulk density. The governing equation for the center-of-mass wavefunction is derived and solved numerically. The ground state wavefunctions and resulting matter densities are investigated. A lowering of the density from its bulk value is found for (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  10. The Wave Function: Essays in the Metaphysics of Quantum Mechanics.Alyssa Ney & David Albert (eds.) - 2013 - , US: Oxford University Press.
    This is a new volume of original essays on the metaphysics of quantum mechanics. The essays address questions such as: What fundamental metaphysics is best motivated by quantum mechanics? What is the ontological status of the wave function? What is the nature of the fundamental space (or space-time manifold) of quantum mechanics?
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   90 citations  
  11.  24
    Collapse of the Wave Function: Models, Ontology, Origin, and Implications.Shan Gao (ed.) - 2018 - New York, NY: Cambridge University Press.
    An overview of the collapse theories of quantum mechanics. Written by distinguished physicists and philosophers of physics, it discusses the origin and implications of wave-function collapse, the controversies around collapse models and their ontologies, and new arguments for the reality of wave function collapse.
    Direct download  
     
    Export citation  
     
    Bookmark   1 citation  
  12. The Wave-Function as a Multi-Field.Mario Hubert & Davide Romano - 2018 - European Journal for Philosophy of Science 8 (3):521-537.
    It is generally argued that if the wave-function in the de Broglie–Bohm theory is a physical field, it must be a field in configuration space. Nevertheless, it is possible to interpret the wave-function as a multi-field in three-dimensional space. This approach hasn’t received the attention yet it really deserves. The aim of this paper is threefold: first, we show that the wave-function is naturally and straightforwardly construed as a multi-field; second, we show why this (...)
    Direct download (10 more)  
     
    Export citation  
     
    Bookmark   34 citations  
  13. Fundamental physical ontologies and the constraint of empirical coherence: a defense of wave function realism.Alyssa Ney - 2015 - Synthese 192 (10):3105-3124.
    This paper defends wave function realism against the charge that the view is empirically incoherent because our evidence for quantum theory involves facts about objects in three-dimensional space or space-time . It also criticizes previous attempts to defend wave function realism against this charge by claiming that the wave function is capable of grounding local beables as elements of a derivative ontology.
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   38 citations  
  14. Three arguments for wave function realism.Alyssa Ney - 2023 - European Journal for Philosophy of Science 13 (4):1-18.
    Wave function realism is an interpretative framework for quantum theories which recommends taking the central ontology of these theories to consist of the quantum wave function, understood as a field on a high-dimensional space. This paper presents and evaluates three standard arguments for wave function realism, and clarifies the sort of ontological framework these arguments support.
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  15. Scientific Realism and Primitive Ontology Or: The Pessimistic Induction and the Nature of the Wave Function.Valia Allori - 2018 - Lato Sensu 1 (5):69-76.
    In this paper I wish to connect the recent debate in the philosophy of quantum mechanics concerning the nature of the wave function to the historical debate in the philosophy of science regarding the tenability of scientific realism. Being realist about quantum mechanics is particularly challenging when focusing on the wave function. According to the wave function ontology approach, the wave function is a concrete physical entity. In contrast, according to an (...)
    Direct download (6 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  16. Realism about the wave function.Eddy Keming Chen - 2019 - Philosophy Compass 14 (7):e12611.
    A century after the discovery of quantum mechanics, the meaning of quantum mechanics still remains elusive. This is largely due to the puzzling nature of the wave function, the central object in quantum mechanics. If we are realists about quantum mechanics, how should we understand the wave function? What does it represent? What is its physical meaning? Answering these questions would improve our understanding of what it means to be a realist about quantum mechanics. In this (...)
    Direct download (7 more)  
     
    Export citation  
     
    Bookmark   36 citations  
  17.  35
    The Meaning of the Wave Function: In Search of the Ontology of Quantum Mechanics.Dustin Lazarovici - 2017 - International Studies in the Philosophy of Science 31 (3):321-324.
    Direct download (6 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  18. The Meaning of the Wave Function: In Search of the Ontology of Quantum Mechanics. [REVIEW]Mario Hubert - 2017 - Notre Dame Philosophical Reviews (00):00-00.
    What is the meaning of the wave-function? After almost 100 years since the inception of quantum mechanics, is it still possible to say something new on what the wave-function is supposed to be? Yes, it is. And Shan Gao managed to do so with his newest book. Here we learn what contemporary physicists and philosophers think about the wave-function; we learn about the de Broglie-Bohm theory, the GRW collapse theory, the gravity-induced collapse theory by (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  19. Scientific Realism without the Wave-Function: An Example of Naturalized Quantum Metaphysics.Valia Allori - 2020 - In Steven French & Juha Saatsi (eds.), Scientific Realism and the Quantum. Oxford: Oxford University Press.
    Scientific realism is the view that our best scientific theories can be regarded as (approximately) true. This is connected with the view that science, physics in particular, and metaphysics could (and should) inform one another: on the one hand, science tells us what the world is like, and on the other hand, metaphysical principles allow us to select between the various possible theories which are underdetermined by the data. Nonetheless, quantum mechanics has always been regarded as, at best, puzzling, if (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   4 citations  
  20.  64
    The World in the Wave Function: A Metaphysics for Quantum Physics.Alyssa Ney - 2021 - New York, NY, USA: Oxford University Press.
    "What are the ontological implications of quantum theories, that is, what do they tell us about the fundamental objects that make up our world? How should quantum theories make us reevaluate our classical conceptions of the basic constitution of material objects and ourselves? Is there fundamental quantum nonlocality? This book articulates several rival approaches to answering these questions, ultimately defending the wave function realist approach. It is a way of interpreting quantum theories so that the central object they (...)
  21. A New Argument for the Nomological Interpretation of the Wave Function: The Galilean Group and the Classical Limit of Nonrelativistic Quantum Mechanics.Valia Allori - 2017 - International Studies in the Philosophy of Science (2):177-188.
    In this paper I investigate, within the framework of realistic interpretations of the wave function in nonrelativistic quantum mechanics, the mathematical and physical nature of the wave function. I argue against the view that mathematically the wave function is a two-component scalar field on configuration space. First, I review how this view makes quantum mechanics non- Galilei invariant and yields the wrong classical limit. Moreover, I argue that interpreting the wave function as (...)
    Direct download (9 more)  
     
    Export citation  
     
    Bookmark   9 citations  
  22.  74
    Can the wave function in configuration space be replaced by single-particle wave functions in physical space?Travis Norsen, Damiano Marian & Xavier Oriols - 2015 - Synthese 192 (10):3125-3151.
    The ontology of Bohmian mechanics includes both the universal wave function and particles. Proposals for understanding the physical significance of the wave function in this theory have included the idea of regarding it as a physically-real field in its 3N-dimensional space, as well as the idea of regarding it as a law of nature. Here we introduce and explore a third possibility in which the configuration space wave function is simply eliminated—replaced by a (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   9 citations  
  23. Niels Bohr on the wave function and the classical/quantum divide.Henrik Zinkernagel - 2016 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 53:9-19.
    It is well known that Niels Bohr insisted on the necessity of classical concepts in the account of quantum phenomena. But there is little consensus concerning his reasons, and what he exactly meant by this. In this paper, I re-examine Bohr’s interpretation of quantum mechanics, and argue that the necessity of the classical can be seen as part of his response to the measurement problem. More generally, I attempt to clarify Bohr’s view on the classical/quantum divide, arguing that the relation (...)
    Direct download (8 more)  
     
    Export citation  
     
    Bookmark   18 citations  
  24.  39
    A New Ontological Interpretation of the Wave Function.Shan Gao - unknown
    In this paper, we propose an ontological interpretation of the wave function in terms of random discontinuous motion of particles. According to this interpretation, the wave function of an N-body quantum system describes the state of random discontinuous motion of N particles, and in particular, the modulus squared of the wave function gives the probability density that the particles appear in every possible group of positions in space. We present three arguments supporting this new (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark  
  25.  82
    The Ontological Interpretation of the Wave Function of the Universe.Quentin Smith - 1997 - The Monist 80 (1):160-185.
    There are two distinct questions that arise when one asks about “the interpretation of quantum mechanics” or “how can quantum mechanics be reconciled with the ‘real’ world—the world we experience.”.
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   10 citations  
  26. The Meaning of the Wave Function–In Search of the Ontology of Quantum Mechanics, Shan Gao, Cambridge University Press (2017). [REVIEW]Ronnie Hermens - 2019 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 65:145-147.
     
    Export citation  
     
    Bookmark  
  27.  30
    Does the quantum mechanical wave function exist?Claus Kiefer - 2019 - Philosophical Problems in Science 66:111-128.
    I address the question whether the wave function in quantum theory exists as a real quantity or not. For this purpose, I discuss the essentials of the quantum formalism and emphasize the central role of the superposition principle. I then explain the measurement problem and discuss the process of decoherence. Finally, I address the special features that the quantization of gravity brings into the game. From all of this I conclude that the wave function really exists, (...)
    No categories
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  28.  67
    Shan Gao: The Meaning of the Wave Function. In Search of the Ontology of Quantum Mechanics: Cambridge University Press, 2017.Carlo Rovelli - 2018 - Foundations of Physics 48 (6):747-749.
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  29. Laws of nature and the reality of the wave function.Mauro Dorato - 2015 - Synthese 192 (10):3179-3201.
    In this paper I review three different positions on the wave function, namely: nomological realism, dispositionalism, and configuration space realism by regarding as essential their capacity to account for the world of our experience. I conclude that the first two positions are committed to regard the wave function as an abstract entity. The third position will be shown to be a merely speculative attempt to derive a primitive ontology from a reified mathematical space. Without entering (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   6 citations  
  30.  42
    Interpreting the quantum wave function in terms of 'interacting faculties'.Christian de Ronde - unknown
    In this article we discuss the problem of finding an interpretation of quantum mechanics which provides an objective account of physical reality. In the first place we discuss the problem of interpretation and analyze the importance of such an objective account in physics. In this context we present the problems which arise when interpreting the quantum wave function within the orthodox formulation of quantum mechanics. In connection to this critic, we expose the concept of ‘entity’ as an epistemological (...)
    Direct download  
     
    Export citation  
     
    Bookmark   1 citation  
  31.  11
    Status of the Wave Function of Quantum Mechanics, or, What is Quantum Mechanics Trying to Tell Us?D.-M. Cabaret, T. Grandou & E. Perrier - 2022 - Foundations of Physics 52 (3):1-29.
    The most debated status of the wave function of Quantum Mechanics is discussed in the light of the epistemological vs ontological opposition.
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  32.  50
    Protective Measurements and the Reality of the Wave Function.Shan Gao - 2022 - British Journal for the Philosophy of Science 73 (3):777-794.
    It has been debated whether protective measurement implies the reality of the wave function. In this article, I present a new analysis of the relationship between protective measurements and the reality of the wave function. First, I briefly introduce protective measurements and the ontological models framework for them. Second, I give a simple proof of Hardy’s theorem in terms of protective measurements. Third, I analyse two suggested ψ -epistemic models of a protective measurement. It is shown (...)
    Direct download (6 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  33.  10
    About the nature of the wave function and its dimensionality: the case of quantum chemistry.Sebastian Fortin & Jesús Alberto Jaimes Arriaga - unknown
    The problem of the 3N dimensions of the wave function is of particular interest in the philosophy of physics. In this work, we will recall the main positions about the nature and dimensionality of the wave function and we will introduce a new perspective, coming from quantum chemistry. For this, we will bring to light the formal operations that underlie the independent electron approximation. On this basis, we will point out how quantum chemistry can offer new (...)
    No categories
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  34.  44
    On the reality and meaning of the wave function.Shan Gao - unknown
    In this article, we give a clearer argument for the reality of the wave function in terms of protective measurements, which does not depend on nontrivial assumptions and also overcomes existing objections. Moreover, based on an analysis of the mass and charge properties of a quantum system, we propose a new ontological interpretation of the wave function. According to this interpretation, the wave function of an N-body system represents the state of motion of N (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  35.  12
    Why protective measurement implies the reality of the wave function: further consolidation.Shan Gao - 2019 - In Diederik Aerts, Dalla Chiara, Maria Luisa, Christian de Ronde & Decio Krause (eds.), Probing the meaning of quantum mechanics: information, contextuality, relationalism and entanglement: Proceedings of the II International Workshop on Quantum Mechanics and Quantum Information: Physical, Philosophical and Logical Approaches, CLEA, Brussels. World Scientific.
    The existing psi-ontology theorems are based on a simplified assumption of the ontological models framework, according to which when a measurement is performed the behaviour of the measuring device is determined by the ontic state of the measured system immediately before the measurement. In this paper, I give an argument for the reality of the wave function in terms of protective measurements under a more reasonable assumption, according to which the behaviour of the measuring device during a (...)
    No categories
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  36.  20
    Why protective measurement establishes the reality of the wave function.Shan Gao - unknown
    It has been debated whether protective measurement implies the reality of the wave function. In this paper, I present a new analysis of the relationship between protective measurement and the reality of the wave function. First, I briefly introduce protective measurements and the ontological models framework for them. Second, I give a simple proof of Hardy's theorem in terms of protective measurements. It shows that when assuming the ontic state of the protected system keeps unchanged during (...)
    No categories
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  37. Primitive Ontology in a Nutshell.Valia Allori - 2015 - International Journal of Quantum Foundations 1 (2):107-122.
    The aim of this paper is to summarize a particular approach of doing metaphysics through physics - the primitive ontology approach. The idea is that any fundamental physical theory has a well-defined architecture, to the foundation of which there is the primitive ontology, which represents matter. According to the framework provided by this approach when applied to quantum mechanics, the wave function is not suitable to represent matter. Rather, the wave function has a nomological (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   26 citations  
  38.  88
    Quantum mechanics, time and ontology.Valia Allori - 2019 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 66 (C):145-154.
    Against what is commonly accepted in many contexts, it has been recently suggested that both deterministic and indeterministic quantum theories are not time‐reversal invariant, and thus time is handed in a quantum world. In this paper, I analyze these arguments and evaluate possible reactions to them. In the context of deterministic theories, first I show that this conclusion depends on the controversial assumption that the wavefunction is a physically real scalar field in configuration space. Then I argue that (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   4 citations  
  39.  18
    Wave-functionalism.Valia Allori - 2021 - Synthese 199 (199):12271–12293.
    In this paper I present a new perspective for interpreting the wavefunction as a non-material, nonepistemic, non-representational entity. I endorse a functional view according to which the wavefunction is defined by its roles in the theory. I argue that this approach shares some similarities with the nomological account of the wave function as well as with the pragmatist and epistemic approaches to quantum theory, while avoiding the major objections of these alternatives.
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  40. Primitive Ontology and the Classical World.Valia Allori - 2016 - In R. Kastner, J. Jeknic-Dugic & G. Jaroszkiewicz (eds.), Quantum Structural Studies: Classical Emergence from the Quantum Level. World Scientific. pp. 175-199.
    In this paper I present the common structure of quantum theories with a primitive ontology, and discuss in what sense the classical world emerges from quantum theories as understood in this framework. In addition, I argue that the primitive ontology approach is better at answering this question than the rival wave function ontology approach or any other approach in which the classical world is nonreductively ‘emergent:’ even if the classical limit within this framework needs to (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  41.  58
    Fundamental physical theories: mathematical structures grounded on a primitive ontology.Valia Allori - 2007 - Dissertation, Rutgers
    In my dissertation I analyze the structure of fundamental physical theories. I start with an analysis of what an adequate primitive ontology is, discussing the measurement problem in quantum mechanics and theirs solutions. It is commonly said that these theories have little in common. I argue instead that the moral of the measurement problem is that the wave function cannot represent physical objects and a common structure between these solutions can be recognized: each of them is about (...)
    Direct download  
     
    Export citation  
     
    Bookmark   3 citations  
  42.  64
    Wave-functionalism.Valia Allori - 2021 - Synthese 199 (5-6):12271-12293.
    In this paper I present a new perspective for interpreting the wavefunction as a non-material, non-epistemic, non-representational entity. I endorse a functional view according to which the wavefunction is defined by its roles in the theory. I argue that this approach shares some similarities with the nomological account of the wave function as well as with the pragmatist and epistemic approaches to quantum theory, while avoiding the major objections of these alternatives.
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   4 citations  
  43. Primitive Ontology and the Structure of Fundamental Physical Theories.Valia Allori - 2013 - In Alyssa Ney & David Z. Albert (eds.), The Wave Function: Essays in the Metaphysics of Quantum Mechanics. Oxford University Press. pp. 58-75.
    For a long time it was believed that it was impossible to be realist about quantum mechanics. It took quite a while for the researchers in the foundations of physics, beginning with John Stuart Bell [Bell 1987], to convince others that such an alleged impossibility had no foundation. Nowadays there are several quantum theories that can be interpreted realistically, among which Bohmian mechanics, the GRW theory, and the many-worlds theory. The debate, though, is far from being over: in what respect (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   53 citations  
  44. On the Metaphysics of Quantum Mechanics.Valia Allori - 2013 - In Soazig Lebihan (ed.), La philosophie de la physique: d'aujourd'hui a demain. Editions Vuibert.
    What is quantum mechanics about? The most natural way to interpret quantum mechanics realistically as a theory about the world might seem to be what is called wave function ontology: the view according to which the wave function mathematically represents in a complete way fundamentally all there is in the world. Erwin Schroedinger was one of the first proponents of such a view, but he dismissed it after he realized it led to macroscopic superpositions (if (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   10 citations  
  45. The Ontology of Bohmian Mechanics.M. Esfeld, D. Lazarovici, Mario Hubert & D. Durr - 2014 - British Journal for the Philosophy of Science 65 (4):773-796.
    The paper points out that the modern formulation of Bohm’s quantum theory known as Bohmian mechanics is committed only to particles’ positions and a law of motion. We explain how this view can avoid the open questions that the traditional view faces according to which Bohm’s theory is committed to a wave-function that is a physical entity over and above the particles, although it is defined on configuration space instead of three-dimensional space. We then enquire into the status (...)
    Direct download (12 more)  
     
    Export citation  
     
    Bookmark   85 citations  
  46. Primitive ontology and quantum field theory.Vincent Lam - 2015 - European Journal for Philosophy of Science 5 (3):387-397.
    Primitive ontology is a recently much discussed approach to the ontology of quantum theory according to which the theory is ultimately about entities in 3-dimensional space and their temporal evolution. This paper critically discusses the primitive ontologies that have been suggested within the Bohmian approach to quantum field theory in the light of the existence of unitarily inequivalent representations. These primitive ontologies rely either on a Fock space representation or a wave functional representation, which are strictly speaking (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   4 citations  
  47.  52
    Overlaps in Pilot Wave Field Theories.I. Schmelzer - 2010 - Foundations of Physics 40 (3):289-300.
    Recently doubts have been raised about the ability of pilot wave theories with field ontology to recover the predictions of quantum field theory. In particular, Struyve has questioned that the overlap between wave functionals of macroscopically different states with fixed particle number is really non-significant.With numerical computations and some further plausibility arguments we show that the overlap between n-particle states in field theory decreases almost exponentially with the number of particles and becomes non-significant already for small particle (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark  
  48. Events and the Ontology of Quantum Mechanics.Mauro Dorato - 2015 - Topoi 34 (2):369-378.
    In the first part of the paper I argue that an ontology of events is precise, flexible and general enough so as to cover the three main alternative formulations of quantum mechanics as well as theories advocating an antirealistic view of the wave function. Since these formulations advocate a primitive ontology of entities living in four-dimensional spacetime, they are good candidates to connect that quantum image with the manifest image of the world. However, to the extent (...)
    Direct download (7 more)  
     
    Export citation  
     
    Bookmark   20 citations  
  49. On the tension between ontology and epistemology in quantum probabilities.Amit Hagar - 2017 - In Olimpia Lombardi, Sebastian Fortin, Federico Holik & Cristian López (eds.), What is Quantum Information? New York, NY: CUP. pp. 147-178.
    For many among the scientifically informed public, and even among physicists, Heisenberg's uncertainty principle epitomizes quantum mechanics. Nevertheless, more than 86 years after its inception, there is no consensus over the interpretation, scope, and validity of this principle. The aim of this chapter is to offer one such interpretation, the traces of which may be found already in Heisenberg's letters to Pauli from 1926, and in Dirac's anticipation of Heisenberg's uncertainty relations from 1927, that stems form the hypothesis of finite (...)
     
    Export citation  
     
    Bookmark  
  50.  38
    Primitive Ontology or Primitive Relations?Quentin Ruyant - manuscript
    Primitive ontology is a program which seeks to make explicit the ontological commitments of physical theories in terms of a distribution of matter in ordinary space-time. This program targets wave-function realism, which interprets the high-dimensional configuration space on which wave-functions are defined as our fundamental physical space. Wave-function realism allegedly fails to account for a correspondence between the ontology it postulates and the ‘manifest image’ of the world in which experimental tests of the (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
1 — 50 / 1000