Results for 'quantum mechanics'

1000+ found
Order:
  1. Quantum Mechanics and Experience.David Z. Albert - 1992 - Harvard Up.
    Presents a guide to the basics of quantum mechanics and measurement.
  2. Can Quantum-Mechanical Description of Physical Reality Be Considered Complete?Albert Einstein, Boris Podolsky & Nathan Rosen - 1935 - Physical Review (47):777-780.
  3.  11
    The Quantum Mechanics of Minds and Worlds.Jeffrey A. Barrett - 1999 - Oxford, GB: Oxford University Press UK.
    Jeffrey Barrett presents the most comprehensive study yet of a problem that has puzzled physicists and philosophers since the 1930s. Quantum mechanics is in one sense the most successful physical theory ever, accurately predicting the behaviour of the basic constituents of matter. But it has an apparent ambiguity or inconsistency at its heart; Barrett gives a careful, clear, and challenging evaluation of attempts to deal with this problem.
  4.  5
    The Quantum Mechanics of Minds and Worlds.Jeffrey A. Barrett - 1999 - Oxford, GB: Oxford University Press UK.
    Jeffrey Barrett presents the most comprehensive study yet of a problem that has puzzled physicists and philosophers since the 1930s. The standard theory of quantum mechanics is in one sense the most successful physical theory ever, predicting the behaviour of the basic constituents of all physical things; no other theory has ever made such accurate empirical predictions. However, if one tries to understand the theory as providing a complete and accurate framework for the description of the behaviour of (...)
  5. How Quantum Mechanics Can Consistently Describe the Use of Itself.Dustin Lazarovici & Mario Hubert - 2019 - Scientific Reports 470 (9):1-8.
    We discuss the no-go theorem of Frauchiger and Renner based on an "extended Wigner's friend" thought experiment which is supposed to show that any single-world interpretation of quantum mechanics leads to inconsistent predictions if it is applicable on all scales. We show that no such inconsistency occurs if one considers a complete description of the physical situation. We then discuss implications of the thought experiment that have not been clearly addressed in the original paper, including a tension between (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   4 citations  
  6.  87
    Relational quantum mechanics.Federico Laudisa - 2008 - Stanford Encyclopedia of Philosophy.
    Relational quantum mechanics is an interpretation of quantum theory which discards the notions of absolute state of a system, absolute value of its physical quantities, or absolute event. The theory describes only the way systems affect each other in the course of physical interactions. State and physical quantities refer always to the interaction, or the relation, between two systems. Nevertheless, the theory is assumed to be complete. The physical content of quantum theory is understood as expressing (...)
    Direct download  
     
    Export citation  
     
    Bookmark   46 citations  
  7.  97
    Speakable and unspeakable in quantum mechanics: collected papers on quantum philosophy.John Stewart Bell - 2004 - New York: Cambridge University Press.
    This book comprises all of John Bell's published and unpublished papers in the field of quantum mechanics, including two papers that appeared after the first edition was published. It also contains a preface written for the first edition, and an introduction by Alain Aspect that puts into context Bell's great contribution to the quantum philosophy debate. One of the leading expositors and interpreters of modern quantum theory, John Bell played a major role in the development of (...)
    Direct download  
     
    Export citation  
     
    Bookmark   379 citations  
  8.  49
    Relativity, Quantum Mechanics and EPR.Robert Clifton, Constantine Pagonis & Itamar Pitowsky - 1992 - PSA: Proceedings of the Biennial Meeting of the Philosophy of Science Association 1992 (Volume One: Contributed Papers):114 - 128.
    The Einstein-Podolsky-Rosen argument for the incompleteness of quantum mechanics involves two assumptions: one about locality and the other about when it is legitimate to infer the existence of an element-of-reality. Using one simple thought experiment, we argue that quantum predictions and the relativity of simultaneity require that both these assumptions fail, whether or not quantum mechanics is complete.
    Direct download  
     
    Export citation  
     
    Bookmark   12 citations  
  9.  44
    Quantum mechanics, time, and theology: Indefinite causal order and a new approach to salvation.Emily Qureshi-Hurst & Anna Pearson - 2020 - Zygon 55 (3):663-684.
    Quantum mechanics has recently indicated that, at the fundamental level, temporal order is not fixed. This phenomenon, termed Indefinite Causal Order, is yet to receive metaphysical or theological engagement. We examine Indefinite Causal Order, particularly as it emerges in a 2018 photonic experiment. In this experiment, two operations A and B were shown to be in a superposition with regard to their causal order. Essentially, time, intuitively understood as fixed, flowing, and fundamental, becomes fuzzy. We argue that if (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  10.  33
    The Quantum Mechanics of Minds and Worlds.Jeffrey Alan Barrett - 1999 - Oxford, GB: Oxford University Press.
    Jeffrey Barrett presents the most comprehensive study yet of a problem that has puzzled physicists and philosophers since the 1930s.
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   128 citations  
  11. Quantum mechanics in terms of realism.Arthur Jabs - 2017 - arXiv.Org.
    We expound an alternative to the Copenhagen interpretation of the formalism of nonrelativistic quantum mechanics. The basic difference is that the new interpretation is formulated in the language of epistemological realism. It involves a change in some basic physical concepts. The ψ function is no longer interpreted as a probability amplitude of the observed behaviour of elementary particles but as an objective physical field representing the particles themselves. The particles are thus extended objects whose extension varies in time (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   7 citations  
  12. Quantum mechanics.Jenann Ismael - 2008 - Stanford Encyclopedia of Philosophy.
    Quantum mechanics is, at least at first glance and at least in part, a mathematical machine for predicting the behaviors of microscopic particles — or, at least, of the measuring instruments we use to explore those behaviors — and in that capacity, it is spectacularly successful: in terms of power and precision, head and shoulders above any theory we have ever had. Mathematically, the theory is well understood; we know what its parts are, how they are put together, (...)
    Direct download  
     
    Export citation  
     
    Bookmark   17 citations  
  13. Quantum Mechanics and 3 N - Dimensional Space.Bradley Monton - 2006 - Philosophy of Science 73 (5):778-789.
    I maintain that quantum mechanics is fundamentally about a system of N particles evolving in three-dimensional space, not the wave function evolving in 3N-dimensional space.
    Direct download (13 more)  
     
    Export citation  
     
    Bookmark   64 citations  
  14. Quantum Mechanics in a Time-Asymmetric Universe: On the Nature of the Initial Quantum State.Eddy Keming Chen - 2021 - British Journal for the Philosophy of Science 72 (4):1155–1183.
    In a quantum universe with a strong arrow of time, we postulate a low-entropy boundary condition to account for the temporal asymmetry. In this paper, I show that the Past Hypothesis also contains enough information to simplify the quantum ontology and define a unique initial condition in such a world. First, I introduce Density Matrix Realism, the thesis that the quantum universe is described by a fundamental density matrix that represents something objective. This stands in sharp contrast (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   27 citations  
  15. Quantum mechanics over sets: a pedagogical model with non-commutative finite probability theory as its quantum probability calculus.David Ellerman - 2017 - Synthese (12).
    This paper shows how the classical finite probability theory (with equiprobable outcomes) can be reinterpreted and recast as the quantum probability calculus of a pedagogical or toy model of quantum mechanics over sets (QM/sets). There have been several previous attempts to develop a quantum-like model with the base field of ℂ replaced by ℤ₂. Since there are no inner products on vector spaces over finite fields, the problem is to define the Dirac brackets and the probability (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   4 citations  
  16.  4
    Quantum mechanics and objectivity.Patrick A. Heelan - 1965 - The Hague,: M. Nijhoff.
    Quantum mechanics has raised in an acute form three problems which go to the heart of man's relationship with nature through experimental science: (r) the public objectivity of science, that is, its value as a universal science for all investigators; (2) the empirical objectivity of scientific objects, that is, man's ability to construct a precise or causal spatio-temporal model of microscopic systems; and finally (3), the formal objectivity of science, that is, its value as an expression of what (...)
    Direct download  
     
    Export citation  
     
    Bookmark   16 citations  
  17. Quantum Mechanics and Paradigm Shifts.Valia Allori - 2015 - Topoi 34 (2):313-323.
    It has been argued that the transition from classical to quantum mechanics is an example of a Kuhnian scientific revolution, in which there is a shift from the simple, intuitive, straightforward classical paradigm, to the quantum, convoluted, counterintuitive, amazing new quantum paradigm. In this paper, after having clarified what these quantum paradigms are supposed to be, I analyze whether they constitute a radical departure from the classical paradigm. Contrary to what is commonly maintained, I argue (...)
    Direct download (9 more)  
     
    Export citation  
     
    Bookmark   4 citations  
  18.  69
    Quantum Mechanics Between Ontology and Epistemology.Florian J. Boge - 2018 - Cham: Springer (European Studies in Philosophy of Science).
    This book explores the prospects of rivaling ontological and epistemic interpretations of quantum mechanics (QM). It concludes with a suggestion for how to interpret QM from an epistemological point of view and with a Kantian touch. It thus refines, extends, and combines existing approaches in a similar direction. -/- The author first looks at current, hotly debated ontological interpretations. These include hidden variables-approaches, Bohmian mechanics, collapse interpretations, and the many worlds interpretation. He demonstrates why none of these (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   12 citations  
  19. Can Quantum-Mechanical Description of Physical Reality be Considered Complete?Niels Bohr - 1935 - Physical Review 48 (696--702):696--702.
  20. If Quantum Mechanics Is the Solution, What Should the Problem Be?Vasil Penchev - 2020 - Philosophy of Science eJournal (Elsevier: SSRN) 13 (32):1-10.
    The paper addresses the problem, which quantum mechanics resolves in fact. Its viewpoint suggests that the crucial link of time and its course is omitted in understanding the problem. The common interpretation underlain by the history of quantum mechanics sees discreteness only on the Plank scale, which is transformed into continuity and even smoothness on the macroscopic scale. That approach is fraught with a series of seeming paradoxes. It suggests that the present mathematical formalism of (...) mechanics is only partly relevant to its problem, which is ostensibly known. The paper accepts just the opposite: The mathematical solution is absolute relevant and serves as an axiomatic base, from which the real and yet hidden problem is deduced. Wave-particle duality, Hilbert space, both probabilistic and many-worlds interpretations of quantum mechanics, quantum information, and the Schrödinger equation are included in that base. The Schrödinger equation is understood as a generalization of the law of energy conservation to past, present, and future moments of time. The deduced real problem of quantum mechanics is: “What is the universal law describing the course of time in any physical change therefore including any mechanical motion?”. (shrink)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  21.  1
    Quantum Mechanics: Historical Contingency and the Copenhagen Hegemony.James T. Cushing - 1994 - University of Chicago Press.
    Why does one theory "succeed" while another, possibly clearer interpretation, fails? By exploring two observationally equivalent yet conceptually incompatible views of quantum mechanics, James T. Cushing shows how historical contingency can be crucial to determining a theory's construction and its position among competing views. Since the late 1920s, the theory formulated by Niels Bohr and his colleagues at Copenhagen has been the dominant interpretation of quantum mechanics. Yet an alternative interpretation, rooted in the work of Louis (...)
    No categories
    Direct download  
     
    Export citation  
     
    Bookmark   122 citations  
  22.  24
    Quantum mechanics and its (dis)contents.Peter J. Lewis - 2020 - In Steven French & Juha Saatsi (eds.), Scientific Realism and the Quantum. Oxford University Press.
    Recently, Richard Healey and Simon Friederich have each advocated a pragmatist interpretation of quantum mechanics as a way to dissolve its foundational problems. The idea is that if we concentrate on the way quantum claims are used, the foundational problems of quantum mechanics cannot be formulated, and so do not require solution. Their central contention is that the content of quantum claims differs from the content of non-quantum claims, in that the former is (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   5 citations  
  23. Quantum Mechanics, Metaphysics, and Bohm's Implicate Order.George Williams - 2019 - Mind and Matter 2 (17):155-186.
    The persistent interpretation problem for quantum mechanics may indicate an unwillingness to consider unpalatable assumptions that could open the way toward progress. With this in mind, I focus on the work of David Bohm, whose earlier work has been more influential than that of his later. As I’ll discuss, I believe two assumptions play a strong role in explaining the disparity: 1) that theories in physics must be grounded in mathematical structure and 2) that consciousness must supervene on (...)
    Direct download  
     
    Export citation  
     
    Bookmark  
  24.  92
    Quantum Mechanical Reality: Entanglement and Decoherence.Avijit Lahiri - manuscript
    We look into the ontology of quantum theory as distinct from that of the classical theory in the sciences. Theories carry with them their own ontology while the metaphysics may remain the same in the background. We follow a broadly Kantian tradition, distinguishing between the noumenal and phenomenal realities where the former is independent of our perception while the latter is assembled from the former by means of fragmentary bits of interpretation. Theories do not tell us how the noumenal (...)
    Direct download  
     
    Export citation  
     
    Bookmark  
  25. Quantum mechanics and the philosophy of Alfred North Whitehead.Michael Epperson - 2004 - New York: Fordham University Press.
  26.  86
    Quantum mechanics: an empiricist view.Bas C. Van Fraassen - 1991 - New York: Oxford University Press.
    The author argues that quantum theory admits a plurality of interpretations, each aiding further understanding of the theory, but also advocating specifically the Copenhagen Variant of the Modal Interpretation. That variant is applied to topics like the Einstein-Podolsky-Rosen paradox and the problem of 'identical' particles.
  27. Quantum mechanics as a theory of probability.Itamar Pitowsky - unknown
    We develop and defend the thesis that the Hilbert space formalism of quantum mechanics is a new theory of probability. The theory, like its classical counterpart, consists of an algebra of events, and the probability measures defined on it. The construction proceeds in the following steps: (a) Axioms for the algebra of events are introduced following Birkhoff and von Neumann. All axioms, except the one that expresses the uncertainty principle, are shared with the classical event space. The only (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   38 citations  
  28. The principles of quantum mechanics.Paul Adrien Maurice Dirac - 1930 - Oxford,: Clarendon Press.
    THE PRINCIPLE OF SUPERPOSITION. The need for a quantum theory Classical mechanics has been developed continuously from the time of Newton and applied to an ...
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   257 citations  
  29. Quantum mechanics unscrambled.Jean-Michel Delhotel - 2014
    Is quantum mechanics about ‘states’? Or is it basically another kind of probability theory? It is argued that the elementary formalism of quantum mechanics operates as a well-justified alternative to ‘classical’ instantiations of a probability calculus. Its providing a general framework for prediction accounts for its distinctive traits, which one should be careful not to mistake for reflections of any strange ontology. The suggestion is also made that quantum theory unwittingly emerged, in Schrödinger’s formulation, as (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark  
  30. Relational quantum mechanics.Carlo Rovelli - 1996 - International Journal of Theoretical Physics 35 (8):1637--1678.
  31.  25
    Relational Quantum Mechanics and Probability.M. Trassinelli - 2018 - Foundations of Physics 48 (9):1092-1111.
    We present a derivation of the third postulate of relational quantum mechanics from the properties of conditional probabilities. The first two RQM postulates are based on the information that can be extracted from interaction of different systems, and the third postulate defines the properties of the probability function. Here we demonstrate that from a rigorous definition of the conditional probability for the possible outcomes of different measurements, the third postulate is unnecessary and the Born’s rule naturally emerges from (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  32.  44
    Quantum Mechanics and Cognitive Science: The Probe and Probed.R. B. Varanasi Varanasi Varanasi Ramabrahmam, Ramabrahmam Varanasi, V. Ramabrahmam - 2018 - Cosmos and History, The Journal of Natural and Social Philosophy, 14 (No. 1):123-141..
    Quantum mechanics is currently being tried to be used as a probe to unravel the mysteries of consciousness. Present paper deals with this probe, quantum mechanics and its usefulness in getting an insight of working of human consciousness. The formation of quantum mechanics based on certain axioms, its development to study the dynamical behavior and motions of fundamental particles and quantum energy particles moving with the velocity of light, its insistence on wave functions, (...)
    Direct download  
     
    Export citation  
     
    Bookmark  
  33.  15
    Quantum Mechanics and Salvation: a new meeting point for science and theology.Emily Qureshi-Hurst - forthcoming - Toronto Journal of Theology.
    Quantum mechanics has recently indicated that temporal order is not always fixed, a finding that has far-reaching philosophical and theological implications. The phenomena, termed “indefinite causal order,” shows that events can be in a superposition with regard to their order. In the experimental setting with which this article is concerned, two events, A and B, were shown to be in the ordering relations “A before B” and “B before A” at the same time. This article introduces an ongoing (...)
    Direct download  
     
    Export citation  
     
    Bookmark  
  34.  59
    Contradiction, Quantum Mechanics, and the Square of Opposition.Jonas R. B. Arenhart & Décio Krause - unknown
    We discuss the idea that superpositions in quantum mechanics may involve contradictions or contradictory properties. A state of superposition such as the one comprised in the famous Schrödinger’s cat, for instance, is sometimes said to attribute contradictory properties to the cat: being dead and alive at the same time. If that were the case, we would be facing a revolution in logic and science, since we would have one of our greatest scientific achievements showing that real contradictions exist.We (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   15 citations  
  35.  37
    Quantum Mechanics, Interpretations of.Peter J. Lewis - 2016 - Internet Encyclopedia of Philosophy.
    Interpretations of Quantum Mechanics Quantum mechanics is a physical theory developed in the 1920s to account for the behavior of matter on the atomic scale. It has subsequently been developed into arguably the most empirically successful theory in the history of physics. However, it is hard to understand quantum mechanics as a description of the … Continue reading Quantum Mechanics, Interpretations of →.
    Direct download  
     
    Export citation  
     
    Bookmark  
  36. Quantum Mechanics: Observer and von Neumann Chain.Michele Caponigro - manuscript
    In this brief paper, we argue about the conceptual relationship between the role of observer in quantum mechanics and the von Neumann Chain. -/- .
    Direct download  
     
    Export citation  
     
    Bookmark  
  37. Quantum Mechanics is About Quantum Information.Jeffrey Bub - 2005 - Foundations of Physics 35 (4):541-560.
    I argue that quantum mechanics is fundamentally a theory about the representation and manipulation of information, not a theory about the mechanics of nonclassical waves or particles. The notion of quantum information is to be understood as a new physical primitive—just as, following Einstein’s special theory of relativity, a field is no longer regarded as the physical manifestation of vibrations in a mechanical medium, but recognized as a new physical primitive in its own right.
    Direct download (8 more)  
     
    Export citation  
     
    Bookmark   41 citations  
  38.  64
    Interpreting Quantum Mechanics in Terms of Random Discontinuous Motion of Particles.Shan Gao - unknown
    This thesis is an attempt to reconstruct the conceptual foundations of quantum mechanics. First, we argue that the wave function in quantum mechanics is a description of random discontinuous motion of particles, and the modulus square of the wave function gives the probability density of the particles being in certain locations in space. Next, we show that the linear non-relativistic evolution of the wave function of an isolated system obeys the free Schrödinger equation due to the (...)
    Direct download (6 more)  
     
    Export citation  
     
    Bookmark   23 citations  
  39. Relational quantum mechanics and the determinacy problem.Matthew J. Brown - 2009 - British Journal for the Philosophy of Science 60 (4):679-695.
    Carlo Rovelli's relational interpretation of quantum mechanics holds that a system's states or the values of its physical quantities as normally conceived only exist relative to a cut between a system and an observer or measuring instrument. Furthermore, on Rovelli's account, the appearance of determinate observations from pure quantum superpositions happens only relative to the interaction of the system and observer. Jeffrey Barrett ([1999]) has pointed out that certain relational interpretations suffer from what we might call the (...)
    Direct download (15 more)  
     
    Export citation  
     
    Bookmark   19 citations  
  40.  87
    Sensible quantum mechanics: Are probabilities only in the mind?Don N. Page - 1996 - International Journal of Modern Physics D 5:583-96.
    Quantum mechanics may be formulated as Sensible Quantum Mechanics (SQM) so that it contains nothing probabilistic except conscious perceptions. Sets of these perceptions can be deterministically realized with measures given by expectation values of positive-operator-valued awareness operators. Ratios of the measures for these sets of perceptions can be interpreted as frequency- type probabilities for many actually existing sets. These probabilities gener- ally cannot be given by the ordinary quantum “probabilities” for a single set of alternatives. (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   17 citations  
  41.  39
    Quantum Mechanics and Perspectivalism.Dennis Dieks - unknown
    Experimental evidence of the last decades has made the status of ``collapses of the wave function'' even more shaky than it already was on conceptual grounds: interference effects turn out to be detectable even when collapses are typically expected to occur. Non-collapse interpretations should consequently be taken seriously. In this paper we argue that such interpretations suggest a perspectivalism according to which quantum objects are not characterized by monadic properties, but by relations to other systems. Accordingly, physical systems may (...)
    No categories
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   18 citations  
  42. Interpreting Quantum Mechanics and Predictability in Terms of Facts About the Universe.Andrew Knight - manuscript
    A potentially new interpretation of quantum mechanics posits the state of the universe as a consistent set of facts that are instantiated in the correlations among entangled objects. A fact (or event) occurs exactly when the number or density of future possibilities decreases, and a quantum superposition exists if and only if the facts of the universe are consistent with the superposition. The interpretation sheds light on both in-principle and real-world predictability of the universe.
    Direct download  
     
    Export citation  
     
    Bookmark  
  43. Quantum mechanics: From realism to intuitionism.Ronnie Hermens - unknown
    The interpretation of quantum mechanics has been a problem since its founding days. A large contribution to the discussion of possible interpretations of quantum mechanics is given by the so-called impossibility proofs for hidden variable models; models that allow a realist interpretation. In this thesis some of these proofs are discussed, like von Neumann’s Theorem, the Kochen-Specker Theorem and the Bell-inequalities. Some more recent developments are also investigated, like Meyer’s nullification of the Kochen-Specker Theorem, the MKC-models (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   8 citations  
  44.  66
    Quantum mechanics over sets: a pedagogical model with non-commutative finite probability theory as its quantum probability calculus.David Ellerman - 2017 - Synthese (12):4863-4896.
    This paper shows how the classical finite probability theory (with equiprobable outcomes) can be reinterpreted and recast as the quantum probability calculus of a pedagogical or toy model of quantum mechanics over sets (QM/sets). There have been several previous attempts to develop a quantum-like model with the base field of ℂ replaced by ℤ₂. Since there are no inner products on vector spaces over finite fields, the problem is to define the Dirac brackets and the probability (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   6 citations  
  45. Quantum mechanics and Priority Monism.Claudio Calosi - 2014 - Synthese 191 (5):915-928.
    The paper address the question of whether quantum mechanics (QM) favors Priority Monism, the view according to which the Universe is the only fundamental object. It develops formal frameworks to frame rigorously the question of fundamental mereology and its answers, namely (Priority) Pluralism and Monism. It then reconstructs the quantum mechanical argument in favor of the latter and provides a detailed and thorough criticism of it that sheds furthermore new light on the relation between parthood, composition and (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   20 citations  
  46. Does quantum mechanics play a non-trivial role in life?P. C. W. Davies - unknown
    There have been many claims that quantum mechanics plays a key role in the origin and/or operation of biological organisms, beyond merely providing the basis for the shapes and sizes of biological molecules and their chemical affinities. These range from Schr¨odinger’s suggestion that quantum fluctuations produce mutations, to Hameroff and Penrose’s conjecture that quantum coherence in microtubules is linked to consciousness. I review some of these claims in this paper, and discuss the serious problem of decoherence. (...)
     
    Export citation  
     
    Bookmark   11 citations  
  47.  93
    A quantum-mechanical automation.David Z. Albert - 1987 - Philosophy of Science 54 (4):577-585.
    A Quantum-Mechanical automation, equipped with mechanisms for the measurement and the recording and the prediction of certain physical properties of the world, is described. It is inquired what sort of empirical description such an automation would produce of itself. It turns out that this description would be a very novel one, one such as was never imagined in the conventional discussions of measurement.
    Direct download (8 more)  
     
    Export citation  
     
    Bookmark   9 citations  
  48.  76
    Quantum Mechanics: Myths and Facts. [REVIEW]Hrvoje Nikolić - 2007 - Foundations of Physics 37 (11):1563-1611.
    A common understanding of quantum mechanics (QM) among students and practical users is often plagued by a number of “myths”, that is, widely accepted claims on which there is not really a general consensus among experts in foundations of QM. These myths include wave-particle duality, time-energy uncertainty relation, fundamental randomness, the absence of measurement-independent reality, locality of QM, nonlocality of QM, the existence of well-defined relativistic QM, the claims that quantum field theory (QFT) solves the problems of (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   13 citations  
  49.  2
    Essential Quantum Mechanics.Gary Bowman - 2007 - Oxford University Press UK.
    Quantum mechanics - central not only to physics, but also to chemistry, materials science, and other fields - is notoriously abstract and difficult. Essential Quantum Mechanics is a uniquely concise and explanatory book that fills the gap between introductory and advanced courses, between popularizations and technical treatises.By focusing on the fundamental structure, concepts, and methods of quantum mechanics, this introductory yet sophisticated work emphasizes both physical and mathematical understanding. A modern perspective is adopted throughout (...)
    Direct download  
     
    Export citation  
     
    Bookmark   2 citations  
  50. The quantum mechanical path integral: Toward a realistic interpretation.Mark Sharlow - 2007
    In this paper, I explore the feasibility of a realistic interpretation of the quantum mechanical path integral - that is, an interpretation according to which the particle actually follows the paths that contribute to the integral. I argue that an interpretation of this sort requires spacetime to have a branching structure similar to the structures of the branching spacetimes proposed by previous authors. I point out one possible way to construct branching spacetimes of the required sort, and I ask (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   4 citations  
1 — 50 / 1000