Results for 'protein complexes'

998 found
Order:
  1. The representation of protein complexes in the Protein Ontology.Carol Bult, Harold Drabkin, Alexei Evsikov, Darren Natale, Cecilia Arighi, Natalia Roberts, Alan Ruttenberg, Peter D’Eustachio, Barry Smith, Judith Blake & Cathy Wu - 2011 - BMC Bioinformatics 12 (371):1-11.
    Representing species-specific proteins and protein complexes in ontologies that are both human and machine-readable facilitates the retrieval, analysis, and interpretation of genome-scale data sets. Although existing protin-centric informatics resources provide the biomedical research community with well-curated compendia of protein sequence and structure, these resources lack formal ontological representations of the relationships among the proteins themselves. The Protein Ontology (PRO) Consortium is filling this informatics resource gap by developing ontological representations and relationships among proteins and their variants (...)
    Direct download  
     
    Export citation  
     
    Bookmark   4 citations  
  2.  19
    Predicting Protein Complexes in Weighted Dynamic PPI Networks Based on ICSC.Jie Zhao, Xiujuan Lei & Fang-Xiang Wu - 2017 - Complexity:1-11.
    No categories
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  3.  26
    Shared components of protein complexes—versatile building blocks or biochemical artefacts?Roland Krause, Christian von Mering, Peer Bork & Thomas Dandekar - 2004 - Bioessays 26 (12):1333-1343.
    Protein complexes perform many important functions in the cell. Large‐scale studies of proteinprotein interactions have not only revealed new complexes but have also placed many proteins into multiple complexes. Whilst the advocates of hypothesis‐free research touted the discovery of these shared components as new links between diverse cellular processes, critical commentators denounced many of the findings as artefacts, thus questioning the usefulness of large‐scale approaches. Here, we survey proteins known to be shared between (...), as established in the literature, and compare them to shared components found in high‐throughput screens. We discuss the various challenges to the identification and functional interpretation of bona fide shared components, namely contaminants, variant and megacomplexes, and transient interactions, and suggest that many of the novel shared components found in high‐throughput screens are neither the results of contamination nor central components, but appear to be primarily regulatory links in cellular processes. BioEssays 26:1333–1343, 2004. © 2004 Wiley Periodicals, Inc. (shrink)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  4.  13
    Lean forward: Genetic analysis of temperature‐sensitive mutants unfolds the secrets of oligomeric protein complex assembly.Michael McMurray - 2014 - Bioessays 36 (9):836-846.
    Multisubunit protein complexes are essential for cellular function. Genetic analysis of essential processes requires special tools, among which temperature‐sensitive (Ts) mutants have historically been crucial. Many researchers assume that the effect of temperature on such mutants is to drive their proteolytic destruction. In fact, degradation‐mediated elimination of mutant proteins likely explains only a fraction of the phenotypes associated with Ts mutants. Here I discuss insights gained from analysis of Ts mutants in oligomeric proteins, with particular focus on the (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark  
  5. Toll-like receptor signaling in vertebrates: Testing the integration of protein, complex, and pathway data in the Protein Ontology framework.Cecilia Arighi, Veronica Shamovsky, Anna Maria Masci, Alan Ruttenberg, Barry Smith, Darren Natale, Cathy Wu & Peter D’Eustachio - 2015 - PLoS ONE 10 (4):e0122978.
    The Protein Ontology provides terms for and supports annotation of species-specific protein complexes in an ontology framework that relates them both to their components and to species-independent families of complexes. Comprehensive curation of experimentally known forms and annotations thereof is expected to expose discrepancies, differences, and gaps in our knowledge. We have annotated the early events of innate immune signaling mediated by Toll-Like Receptor 3 and 4 complexes in human, mouse, and chicken. The resulting ontology (...)
    Direct download  
     
    Export citation  
     
    Bookmark   4 citations  
  6.  80
    The quantum physics of synaptic communication via the SNARE protein complex.Danko D. Georgiev & James F. Glazebrook - 2018 - Progress in Biophysics and Molecular Biology 135:16-29.
    Twenty five years ago, Sir John Carew Eccles together with Friedrich Beck proposed a quantum mechanical model of neurotransmitter release at synapses in the human cerebral cortex. The model endorsed causal influence of human consciousness upon the functioning of synapses in the brain through quantum tunneling of unidentified quasiparticles that trigger the exocytosis of synaptic vesicles, thereby initiating the transmission of information from the presynaptic towards the postsynaptic neuron. Here, we provide a molecular upgrade of the Beck and Eccles model (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  7.  6
    DNA topoisomerases: Advances in understanding of cellular roles and multi‐protein complexes via structure‐function analysis.Shannon J. McKie, Keir C. Neuman & Anthony Maxwell - 2021 - Bioessays 43 (4):2000286.
    DNA topoisomerases, capable of manipulating DNA topology, are ubiquitous and indispensable for cellular survival due to the numerous roles they play during DNA metabolism. As we review here, current structural approaches have revealed unprecedented insights into the complex DNA‐topoisomerase interaction and strand passage mechanism, helping to advance our understanding of their activities in vivo. This has been complemented by single‐molecule techniques, which have facilitated the detailed dissection of the various topoisomerase reactions. Recent work has also revealed the importance of topoisomerase (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  8.  10
    PPI-GA: A Novel Clustering Algorithm to Identify Protein Complexes within Protein-Protein Interaction Networks Using Genetic Algorithm.Naeem Shirmohammady, Habib Izadkhah & Ayaz Isazadeh - 2021 - Complexity 2021:1-14.
    Comprehensive analysis of proteins to evaluate their genetic diversity, study their differences, and respond to the tensions is the main subject of an interdisciplinary field of study called proteomics. The main objective of the proteomics is to detect and quantify proteins and study their post-translational modifications and interactions using protein chemistry, bioinformatics, and biology. Any disturbance in proteins interactive network can act as a source for biological disorders and various diseases such as Alzheimer and cancer. Most current computational methods (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  9.  12
    What the paper say: A protein complex present at origins of DNA replication in yeast cells.Julian Blow - 1992 - Bioessays 14 (8):561-563.
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  10.  10
    Peptidyl‐Prolyl Isomerase Activity of Immunophilins Could Be the Mere Consequence of Protein Complex Organization.Mario D. Galigniana - 2020 - Bioessays 42 (7):2000073.
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  11. The Protein Ontology: A structured representation of protein forms and complexes.Darren Natale, Cecilia N. Arighi, Winona C. Barker, Judith A. Blake, Carol J. Bult, Michael Caudy, Harold J. Drabkin, Peter D’Eustachio, Alexei V. Evsikov, Hongzhan Huang, Jules Nchoutmboube, Natalia V. Roberts, Barry Smith, Jian Zhang & Cathy H. Wu - 2011 - Nucleic Acids Research 39 (1):D539-D545.
    The Protein Ontology (PRO) provides a formal, logically-based classification of specific protein classes including structured representations of protein isoforms, variants and modified forms. Initially focused on proteins found in human, mouse and Escherichia coli, PRO now includes representations of protein complexes. The PRO Consortium works in concert with the developers of other biomedical ontologies and protein knowledge bases to provide the ability to formally organize and integrate representations of precise protein forms so as (...)
    No categories
    Direct download  
     
    Export citation  
     
    Bookmark   10 citations  
  12.  2
    Investigating proteinprotein interfaces in bacterial transcription complexes: a fragmentation approach.Patricia C. Burrows - 2003 - Bioessays 25 (12):1150-1153.
    Transcription initiation by σ54–RNA polymerase (RNAP) relies explicitly on a transient interaction with a complex molecular machine belonging to the AAA+ (ATPases associated with various cellular activities) superfamily. Members of the AAA+ superfamily convert chemical energy derived from NTP hydrolysis to a mechanical force used to remodel their target substrate. Recently Bordes and colleagues,1 using a protein fragmentation approach, identified a unique sequence within σ54‐dependent transcriptional activators that constitutes a σ54‐binding interface. This interface is not static, but subject to (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  13.  9
    A protein‐lipid complex that detoxifies free fatty acids.Shaojie Cui & Jin Ye - 2023 - Bioessays 45 (3):2200210.
    Fatty acids (FAs) are well known to serve as substrates for reactions that provide cells with membranes and energy. In contrast to these metabolic reactions, the physiological importance of FAs themselves known as free FAs (FFAs) in cells remains obscure. Since accumulation of FFAs in cells is toxic, cells must develop mechanisms to detoxify FFAs. One such mechanism is to sequester free polyunsaturated FAs (PUFAs) into a droplet‐like structure assembled by Fas‐Associated Factor 1 (FAF1), a cytosolic protein. This sequestration (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  14.  15
    Small proteins, big roles: The signaling protein Apela extends the complexity of developmental pathways in the early zebrafish embryo.Michal Reichman-Fried & Erez Raz - 2014 - Bioessays 36 (8):741-745.
    The identification of molecules controlling embryonic patterning and their functional analysis has revolutionized the fields of Developmental and Cell Biology. The use of new sequence information and modern bioinformatics tools has enriched the list of proteins that could potentially play a role in regulating cell behavior and function during early development. The recent application of efficient methods for gene knockout in zebrafish has accelerated the functional analysis of many proteins, some of which have been overlooked due to their small size. (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  15.  14
    Protein dynamics: Complex by itself.Luigi Leonardo Palese - 2013 - Complexity 18 (3):48-56.
    No categories
    Direct download  
     
    Export citation  
     
    Bookmark   1 citation  
  16.  22
    Proteins as adaptive complex systems.Hans Frauenfelder - forthcoming - Complexity.
    Direct download  
     
    Export citation  
     
    Bookmark  
  17.  68
    The relationship between non‐protein‐coding DNA and eukaryotic complexity.Ryan J. Taft, Michael Pheasant & John S. Mattick - 2007 - Bioessays 29 (3):288-299.
    There are two intriguing paradoxes in molecular biology-the inconsistent relationship between organismal complexity and (1) cellular DNA content and (2) the number of protein-coding genes-referred to as the C-value and G-value paradoxes, respectively. The C-value paradox may be largely explained by varying ploidy. The G-value paradox is more problematic, as the extent of protein coding sequence remains relatively static over a wide range of developmental complexity. We show by analysis of sequenced genomes that the relative amount of non- (...)-coding sequence increases consistently with complexity. We also show that the distribution of introns in complex organisms is non-random. Genes composed of large amounts of intronic sequence are significantly overrepresented amongst genes that are highly expressed in the nervous system, and amongst genes downregulated in embryonic stem cells and cancers. We suggest that the informational paradox in complex organisms may be explained by the expansion of cis-acting regulatory elements and genes specifying trans-acting non-protein-coding RNAs. (shrink)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   10 citations  
  18.  9
    Kinases and G proteins join the Wnt receptor complex.Tom Quaiser, Roman Anton & Michael Kühl - 2006 - Bioessays 28 (4):339-343.
    Wnt proteins form a family of secreted signaling proteins that play a key role in various developmental events such as cell differentiation, cell migration, cell polarity and cell proliferation. It is currently thought that Wnt proteins activate at least three different signaling pathways by binding to seven transmembrane receptors of the Frizzled family and the co-receptor LRP6. Despite our growing knowledge of intracellular components that mediate a Wnt signal, the molecular events at the membrane have remained rather unclear. Now several (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  19.  10
    Werner syndrome protein, the MRE11 complex and ATR: menage‐à‐trois in guarding genome stability during DNA replication?Pietro Pichierri & Annapaola Franchitto - 2004 - Bioessays 26 (3):306-313.
    The correct execution of the DNA replication process is crucially import for the maintenance of genome integrity of the cell. Several types of sources, both endogenous and exogenous, can give rise to DNA damage leading to the DNA replication fork arrest. The processes by which replication blockage is sensed by checkpoint sensors and how the pathway leading to resolution of stalled forks is activated are still not completely understood. However, recent emerging evidence suggests that one candidate for a sensor of (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  20.  15
    Molecular machinery required for protein transport from the endoplasmic reticulum to the golgi complex.Linda Hicke & Randy Schekman - 1990 - Bioessays 12 (6):253-258.
    The cellular machinery responsible for conveying proteins between the endoplasmic reticulum and the Golgi is being investigated using genetics and biochemistry. A role for vesicles in mediating protein traffic between the ER and the Golgi has been established by characterizing yeast mutants defective in this process, and by using recently developed cell‐free assays that measure ER to Golgi transport. These tools have also allowed the identification of several proteins crucial to intracellular protein trafficking. The characterization and possible functions (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  21.  44
    Challenging the dogma: the hidden layer of non-protein-coding RNAs in complex organisms.John S. Mattick - 2003 - Bioessays 25 (10):930-939.
    The central dogma of biology holds that genetic information normally flows from DNA to RNA to protein. As a consequence it has been generally assumed that genes generally code for proteins, and that proteins fulfil not only most structural and catalytic but also most regulatory functions, in all cells, from microbes to mammals. However, the latter may not be the case in complex organisms. A number of startling observations about the extent of non-protein-coding RNA (ncRNA) transcription in the (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   30 citations  
  22.  27
    Effects of a protein- and tryptophan-deficient diet upon complex maze performance.Angela H. Becker, Stephen F. Davis, Cathy A. Grover & Cynthia A. Erickson - 1990 - Bulletin of the Psychonomic Society 28 (2):126-128.
  23. Protein-centric connection of biomedical knowledge: Protein Ontology research and annotation tools.Cecilia N. Arighi, Darren A. Natale, Judith A. Blake, Carol J. Bult, Michael Caudy, Alexander D. Diehl, Harold J. Drabkin, Peter D'Eustachio, Alexei Evsikov, Hongzhan Huang, Barry Smith & Others - 2011 - In Proceedings of the 2nd International Conference on Biomedical Ontology. Buffalo, NY: NCOR. pp. 285-287.
    The Protein Ontology (PRO) web resource provides an integrative framework for protein-centric exploration and enables specific and precise annotation of proteins and protein complexes based on PRO. Functionalities include: browsing, searching and retrieving, terms, displaying selected terms in OBO or OWL format, and supporting URIs. In addition, the PRO website offers multiple ways for the user to request, submit, or modify terms and/or annotation. We will demonstrate the use of these tools for protein research and (...)
    Direct download  
     
    Export citation  
     
    Bookmark  
  24.  15
    Genetics’ Piece of the PI: Inferring the Origin of Complex Traits and Diseases from Proteome‐Wide ProteinProtein Interaction Dynamics.Louis Gauthier, Bram Stynen, Adrian W. R. Serohijos & Stephen W. Michnick - 2020 - Bioessays 42 (2):1900169.
    How do common and rare genetic polymorphisms contribute to quantitative traits or disease risk and progression? Multiple human traits have been extensively characterized at the genomic level, revealing their complex genetic architecture. However, it is difficult to resolve the mechanisms by which specific variants contribute to a phenotype. Recently, analyses of variant effects on molecular traits have uncovered intermediate mechanisms that link sequence variation to phenotypic changes. Yet, these methods only capture a fraction of genetic contributions to phenotype. Here, in (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  25. Protein Ontology: A controlled structured network of protein entities.A. Natale Darren, N. Arighi Cecilia, A. Blake Judith, J. Bult Carol, R. Christie Karen, Cowart Julie, D’Eustachio Peter, D. Diehl Alexander, J. Drabkin Harold, Helfer Olivia, Barry Smith & Others - 2013 - Nucleic Acids Research 42 (1):D415-21..
    The Protein Ontology (PRO; http://proconsortium.org) formally defines protein entities and explicitly represents their major forms and interrelations. Protein entities represented in PRO corresponding to single amino acid chains are categorized by level of specificity into family, gene, sequence and modification metaclasses, and there is a separate metaclass for protein complexes. All metaclasses also have organism-specific derivatives. PRO complements established sequence databases such as UniProtKB, and interoperates with other biomedical and biological ontologies such as the Gene (...)
    Direct download  
     
    Export citation  
     
    Bookmark  
  26.  12
    Peptidylprolylisomerases, Protein Folders, or Scaffolders? The Example of FKBP51 and FKBP52.Theo Rein - 2020 - Bioessays 42 (7):1900250.
    Peptidylprolyl‐isomerases (PPIases) comprise of the protein families of FK506 binding proteins (FKBPs), cyclophilins, and parvulins. Their common feature is their ability to expedite the transition of peptidylprolyl bonds between the cis and the trans conformation. Thus, it seemed highly plausible that PPIase enzymatic activity is crucial for protein folding. However, this has been difficult to prove over the decades since their discovery. In parallel, more and more studies have discovered scaffolding functions of PPIases. This essay discusses the hypothesis (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  27.  39
    Protein transport into peroxisomes: Knowns and unknowns.Tânia Francisco, Tony A. Rodrigues, Ana F. Dias, Aurora Barros-Barbosa, Diana Bicho & Jorge E. Azevedo - 2017 - Bioessays 39 (10):1700047.
    Peroxisomal matrix proteins are synthesized on cytosolic ribosomes and rapidly transported into the organelle by a complex machinery. The data gathered in recent years suggest that this machinery operates through a syringe-like mechanism, in which the shuttling receptor PEX5 − the “plunger” − pushes a newly synthesized protein all the way through a peroxisomal transmembrane protein complex − the “barrel” − into the matrix of the organelle. Notably, insertion of cargo-loaded receptor into the “barrel” is an ATP-independent process, (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  28.  2
    Afadin (AF6) in cancer progression: A multidomain scaffold protein with complex and contradictory roles.Jennifer Huxham, Sébastien Tabariès & Peter M. Siegel - 2021 - Bioessays 43 (1):2000221.
    Adherens (AJ) and tight junctions (TJ) maintain cell‐cell adhesions and cellular polarity in normal tissues. Afadin, a multi‐domain scaffold protein, is commonly found in both adherens and tight junctions, where it plays both structural and signal‐modulating roles. Afadin is a complex modulator of cellular processes implicated in cancer progression, including signal transduction, migration, invasion, and apoptosis. In keeping with the complexities associated with the roles of adherens and tight junctions in cancer, afadin exhibits both tumor suppressive and pro‐metastatic functions. (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  29.  22
    PRDM proteins: Important players in differentiation and disease.Cathrine K. Fog, Giorgio G. Galli & Anders H. Lund - 2012 - Bioessays 34 (1):50-60.
    The PRDM family has recently spawned considerable interest as it has been implicated in fundamental aspects of cellular differentiation and exhibits expanding ties to human diseases. The PRDMs belong to the SET domain family of histone methyltransferases, however, enzymatic activity has been determined for only few PRDMs suggesting that they act by recruiting co‐factors or, more speculatively, confer methylation of non‐histone targets. Several PRDM family members are deregulated in human diseases, most prominently in hematological malignancies and solid cancers, where they (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  30.  12
    Dna → DNA, and DNA → RNA → protein: Orchestration by a single complex operon.James R. Lupski & G. Nigel Godson - 1989 - Bioessays 10 (5):152-157.
    In Escherichia coli, the workhorse of molecular biology, a single operon is involved in the replication, transcription and translation of genetic information. This operon is controlled in a complex manner involving multiple cis‐acting regulatory sequences and trans‐acting regulatory proteins. It interacts with global regulatory networks by mechanisms which are presently being dissected.
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  31.  13
    Dna → DNA, and DNA → RNA → protein: Orchestration by a single complex operon.James R. Lupski & G. Nigel Godson - 1989 - Bioessays 10 (5):152-157.
    In Escherichia coli, the workhorse of molecular biology, a single operon is involved in the replication, transcription and translation of genetic information. This operon is controlled in a complex manner involving multiple cis‐acting regulatory sequences and trans‐acting regulatory proteins. It interacts with global regulatory networks by mechanisms which are presently being dissected.
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  32.  14
    Protein synthesis in eukaryotic organisms: New insights into the function of translation initiation factor EIF‐3.Ernest M. Hannig - 1995 - Bioessays 17 (11):915-919.
    The pathway for initiation of protein synthesis in eukaryotic cells has been defined and refined over the last 25 years using purified components and in vitro reconstituted systems. More recently, powerful genetic analysis in yeast has proved useful in unraveling aspects of translation inherently more difficult to address by strictly biochemical approaches. One area in particular is the functional analysis of multi‐subunit protein factors, termed eukaryotic initiation factors (eIFs), that play an essential role in translation initiation. eIF‐3, the (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  33.  15
    Replication protein A: Single‐stranded DNA's first responder.Ran Chen & Marc S. Wold - 2014 - Bioessays 36 (12):1156-1161.
    Replication protein A (RPA), the major single‐stranded DNA‐binding protein in eukaryotic cells, is required for processing of single‐stranded DNA (ssDNA) intermediates found in replication, repair, and recombination. Recent studies have shown that RPA binding to ssDNA is highly dynamic and that more than high‐affinity binding is needed for function. Analysis of DNA binding mutants identified forms of RPA with reduced affinity for ssDNA that are fully active, and other mutants with higher affinity that are inactive. Single molecule studies (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark  
  34.  6
    Ribosomal protein uS3 in cell biology and human disease: Latest insights and prospects.Dmitri Graifer & Galina Karpova - 2020 - Bioessays 42 (12):2000124.
    The conserved ribosomal protein uS3 in eukaryotes has long been known as one of the essential components of the small (40S) ribosomal subunit, which is involved in the structure of the 40S mRNA entry pore, ensuring the functioning of the 40S subunit during translation initiation. Besides, uS3, being outside the ribosome, is engaged in various cellular processes related to DNA repair, NF‐kB signaling pathway and regulation of apoptosis. This review is devoted to recent data opening new horizons in understanding (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  35.  21
    Parallel dynamics and evolution: Protein conformational fluctuations and assembly reflect evolutionary changes in sequence and structure.Joseph A. Marsh & Sarah A. Teichmann - 2014 - Bioessays 36 (2):209-218.
    Protein structure is dynamic: the intrinsic flexibility of polypeptides facilitates a range of conformational fluctuations, and individual protein chains can assemble into complexes. Proteins are also dynamic in evolution: significant variations in secondary, tertiary and quaternary structure can be observed among divergent members of a protein family. Recent work has highlighted intriguing similarities between these structural and evolutionary dynamics occurring at various levels. Here we review evidence showing how evolutionary changes in protein sequence and structure (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  36.  17
    Protein-protein interactions: Making sense of networks via graph-theoretic modeling.Nataša Pržulj - 2011 - Bioessays 33 (2):115-123.
    The emerging area of network biology is seeking to provide insights into organizational principles of life. However, despite significant collaborative efforts, there is still typically a weak link between biological and computational scientists and a lack of understanding of the research issues across the disciplines. This results in the use of simple computational techniques of limited potential that are incapable of explaining these complex data. Hence, the danger is that the community might begin to view the topological properties of network (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  37.  16
    RNA‐protein interactions: Central players in coordination of regulatory networks.Alexandros Armaos, Elsa Zacco, Natalia Sanchez de Groot & Gian Gaetano Tartaglia - 2021 - Bioessays 43 (2):2000118.
    Changes in the abundance of protein and RNA molecules can impair the formation of complexes in the cell leading to toxicity and death. Here we exploit the information contained in protein, RNA and DNA interaction networks to provide a comprehensive view of the regulation layers controlling the concentration‐dependent formation of assemblies in the cell. We present the emerging concept that RNAs can act as scaffolds to promote the formation ribonucleoprotein complexes and coordinate the post‐transcriptional layer of (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  38.  49
    G protein‐coupled receptors engage the mammalian Hippo pathway through F‐actin.Laura Regué, Fan Mou & Joseph Avruch - 2013 - Bioessays 35 (5):430-435.
    The Hippo pathway, a cascade of protein kinases that inhibits the oncogenic transcriptional coactivators YAP and TAZ, was discovered in Drosophila as a major determinant of organ size in development. Known modes of regulation involve surface proteins that mediate cell‐cell contact or determine epithelial cell polarity which, in a tissue‐specific manner, use intracellular complexes containing FERM domain and actin‐binding proteins to modulate the kinase activities or directly sequester YAP. Unexpectedly, recent work demonstrates that GPCRs, especially those signaling through (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  39.  10
    Palmitoylated Proteins in Plasmodium falciparum‐Infected Erythrocytes: Investigation with Click Chemistry and Metabolic Labeling.Nicole Kilian, Yongdeng Zhang, Lauren LaMonica, Giles Hooker, Derek Toomre, Choukri Ben Mamoun & Andreas M. Ernst - 2020 - Bioessays 42 (6):1900145.
    The examination of the complex cell biology of the human malaria parasite Plasmodium falciparum usually relies on the time‐consuming generation of transgenic parasites. Here, metabolic labeling and click chemistry are employed as a fast transfection‐independent method for the microscopic examination of protein S‐palmitoylation, an important post‐translational modification during the asexual intraerythrocytic replication of P. falciparum. Applying various microscopy approaches such as confocal, single‐molecule switching, and electron microscopy, differences in the extent of labeling within the different asexual developmental stages of (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  40.  8
    Protein Phosphorylation Dynamics: Unexplored Because of Current Methodological Limitations.Alain Robichon - 2020 - Bioessays 42 (4):1900149.
    The study of intrinsic phosphorylation dynamics and kinetics in the context of complex protein architecture in vivo has been challenging: Method limitations have prevented significant advances in the understanding of the highly variable turnover of phosphate groups, synergy, and cooperativity between P‐sites. However, over the last decade, powerful analytical technologies have been developed to determine the full catalog of the phosphoproteome for many species. The curated databases of phospho sites found by mass spectrometry analysis and the computationally predicted sites (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  41.  14
    Protein‐interaction mapping in search of effective drug targets.Amitabha Chaudhuri & John Chant - 2005 - Bioessays 27 (9):958-969.
    Signaling complexes and networks are being intensely studied in an attempt to discover pathways that are amenable to therapeutic intervention. A challenge in this search is to understand the effect that the modulation of a target will have on the overall function of a cell and its surrounding neighbors. Protein‐interaction mapping reveals relationships between proteins and their impact on cellular processes and is being used more widely in our understanding of disease mechanisms and their treatment. The review discusses (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  42. Framework for a protein ontology.Darren A. Natale, Cecilia N. Arighi, Winona Barker, Judith Blake, Ti-Cheng Chang, Zhangzhi Hu, Hongfang Liu, Barry Smith & Cathy H. Wu - 2007 - BMC Bioinformatics 8 (Suppl 9):S1.
    Biomedical ontologies are emerging as critical tools in genomic and proteomic research where complex data in disparate resources need to be integrated. A number of ontologies exist that describe the properties that can be attributed to proteins; for example, protein functions are described by Gene Ontology, while human diseases are described by Disease Ontology. There is, however, a gap in the current set of ontologies—one that describes the protein entities themselves and their relationships. We have designed a (...) Ontology (PRO) to facilitate protein annotation and to guide new experiments. The components of PRO extend from the classification of proteins on the basis of evolutionary relationships to the representation of the multiple protein forms of a gene (products generated by genetic variation, alternative splicing, proteolytic cleavage, and other post-translational modification). PRO will allow the specification of relationships between PRO, GO and other OBO Foundry ontologies. Here we describe the initial development of PRO, illustrated using human proteins from the TGF-beta signaling pathway. (shrink)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   11 citations  
  43.  2
    Protein modifications in Hedgehog signaling.Min Liu, Ying Su, Jingyu Peng & Alan Jian Zhu - 2021 - Bioessays 43 (12):2100153.
    The complexity of the Hedgehog (Hh) signaling cascade has increased over the course of evolution; however, it does not suffice to accommodate the dynamic yet robust requirements of differential Hh signaling activity needed for embryonic development and adult homeostatic maintenance. One solution to solve this dilemma is to apply multiple forms of post‐translational modifications (PTMs) to the core Hh signaling components, modulating their abundance, localization, and signaling activity. This review summarizes various forms of protein modifications utilized to regulate Hh (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  44.  11
    Accessory protein function in the DNA polymerase III holoenzyme from E. coli.Mike O'Donnell - 1992 - Bioessays 14 (2):105-111.
    DNA polymerases which duplicate cellular chromosomes are multiprotein complexes. The individual functions of the many proteins required to duplicate a chromosome are not fully understood. The multiprotein complex which duplicates the Escherichia coli chromosome, DNA polymerase III holoenzyme (holoenzyme), contains a DNA polymerase subunit and nine accessory proteins. This report summarizes our current understanding of the individual functions of the accessory proteins within the holoenzyme, lending insight into why a chromosomal replicase needs such a complex structure.
    No categories
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  45. Proteins and Genes, Singletons and Species.Branko Kozulić - unknown
    Recent experimental data from proteomics and genomics are interpreted here in ways that challenge the predominant viewpoint in biology according to which the four evolutionary processes, including mutation, recombination, natural selection and genetic drift, are sufficient to explain the origination of species. The predominant viewpoint appears incompatible with the finding that the sequenced genome of each species contains hundreds, or even thousands, of unique genes - the genes that are not shared with any other species. These unique genes and proteins, (...)
     
    Export citation  
     
    Bookmark  
  46.  44
    A Top-Down Approach to a Complex Natural System: Protein Folding. [REVIEW]Alan Levin - 2010 - Axiomathes 20 (4):423-437.
    We develop a general method for applying functional models to natural systems and cite recent progress in protein modeling that demonstrates the power of this approach. Functional modeling constrains the range of acceptable structural models of a system, reduces the difficulty of finding them, and improves their fidelity. However, functional models are distinctly different from the structural models that are more commonly applied in science. In particular, structural and functional models ask different questions and provide different kinds of answers. (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  47. Fluorescent tags of protein function in living cells.Michael Whitaker - 2000 - Bioessays 22 (2):180-187.
    A cell's biochemistry is now known to be the biochemistry of molecular machines, that is, protein complexes that are assembled and dismantled in particular locations within the cell as needed. One important element in our understanding has been the ability to begin to see where proteins are in cells and what they are doing as they go about their business. Accordingly, there is now a strong impetus to discover new ways of looking at the workings of proteins in (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  48.  30
    20S proteasomes and protein degradation “by default”.Gad Asher, Nina Reuven & Yosef Shaul - 2006 - Bioessays 28 (8):844-849.
    The degradation of the majority of cellular proteins is mediated by the proteasomes. Ubiquitin‐dependent proteasomal protein degradation is executed by a number of enzymes that interact to modify the substrates prior to their engagement with the 26S proteasomes. Alternatively, certain proteins are inherently unstable and undergo “default” degradation by the 20S proteasomes. Puzzlingly, proteins are by large subjected to both degradation pathways. Proteins with unstructured regions have been found to be substrates of the 20S proteasomes in vitro and, therefore, (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  49.  21
    Problems and paradigms: Multifunctional proteins suggest connections between transcriptional and post‐transcriptional processes.Michael Ladomery - 1997 - Bioessays 19 (10):903-909.
    Recent findings indicate that substantial cross‐talk may exist between transcriptional and post‐transcriptional processes. Firstly, there are suggestions that specific promoters influence the post‐transcriptional fate of transcripts, pointing to communication between protein complexes assembled on DNA and nascent pre‐mRNA. Secondly, an increasing number of proteins appear to be multifunctional, participating in transcriptional and post‐transcriptional events. The classic example is TFIIIA, required for both the transcription of 5S rRNA genes and the packaging of 5S rRNA. TFIIIA is now joined by (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  50.  6
    Putting proteins in context.David S. Goodsell - 2012 - Bioessays 34 (9):718-720.
    Graphical AbstractScientific illustrations, such as this cross-section through part of an E. coli cell, can give an impression of the complexity of a cell's interior and of the way its macromolecules are arranged.
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
1 — 50 / 998