9 found
Order:
  1.  13
    Questions on generalised Baire spaces.Yurii Khomskii, Giorgio Laguzzi, Benedikt Löwe & Ilya Sharankou - 2016 - Mathematical Logic Quarterly 62 (4-5):439-456.
    We provide a list of open problems in the research area of generalised Baire spaces, compiled with the help of the participants of two workshops held in Amsterdam (2014) and Hamburg (2015).
    No categories
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   9 citations  
  2.  31
    Regularity properties on the generalized reals.Sy David Friedman, Yurii Khomskii & Vadim Kulikov - 2016 - Annals of Pure and Applied Logic 167 (4):408-430.
  3.  13
    Full-splitting Miller trees and infinitely often equal reals.Yurii Khomskii & Giorgio Laguzzi - 2017 - Annals of Pure and Applied Logic 168 (8):1491-1506.
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  4.  20
    Cichoń’s diagram, regularity properties and $${\varvec{\Delta}^1_3}$$ Δ 3 1 sets of reals.Vera Fischer, Sy David Friedman & Yurii Khomskii - 2014 - Archive for Mathematical Logic 53 (5-6):695-729.
    We study regularity properties related to Cohen, random, Laver, Miller and Sacks forcing, for sets of real numbers on the Δ31\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\varvec{\Delta}^1_3}$$\end{document} level of the projective hieararchy. For Δ21\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\varvec{\Delta}^1_2}$$\end{document} and Σ21\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\varvec{\Sigma}^1_2}$$\end{document} sets, the relationships between these properties follows the pattern of the well-known Cichoń diagram for cardinal characteristics of the continuum. It is known that (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  5.  14
    Mad Families Constructed from Perfect Almost Disjoint Families.Jörg Brendle & Yurii Khomskii - 2013 - Journal of Symbolic Logic 78 (4):1164-1180.
  6.  13
    Paraconsistent and Paracomplete Zermelo–Fraenkel Set Theory.Yurii Khomskii & Hrafn Valtýr Oddsson - forthcoming - Review of Symbolic Logic:1-31.
    We present a novel treatment of set theory in a four-valued paraconsistent and paracomplete logic, i.e., a logic in which propositions can be both true and false, and neither true nor false. Our approach is a significant departure from previous research in paraconsistent set theory, which has almost exclusively been motivated by a desire to avoid Russell’s paradox and fulfil naive comprehension. Instead, we prioritise setting up a system with a clear ontology of non-classical sets, which can be used to (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  7.  58
    Co-analytic mad families and definable wellorders.Vera Fischer, Sy David Friedman & Yurii Khomskii - 2013 - Archive for Mathematical Logic 52 (7-8):809-822.
    We show that the existence of a ${\Pi^1_1}$ -definable mad family is consistent with the existence of a ${\Delta^{1}_{3}}$ -definable well-order of the reals and ${\mathfrak{b}=\mathfrak{c}=\aleph_3}$.
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  8.  19
    Polarized partitions on the second level of the projective hierarchy.Jörg Brendle & Yurii Khomskii - 2012 - Annals of Pure and Applied Logic 163 (9):1345-1357.
  9.  44
    Projective Hausdorff gaps.Yurii Khomskii - 2014 - Archive for Mathematical Logic 53 (1-2):57-64.
    Todorčević (Fund Math 150(1):55–66, 1996) shows that there is no Hausdorff gap (A, B) if A is analytic. In this note we extend the result by showing that the assertion “there is no Hausdorff gap (A, B) if A is coanalytic” is equivalent to “there is no Hausdorff gap (A, B) if A is ${{\bf \it{\Sigma}}^{1}_{2}}$ ”, and equivalent to ${\forall r \; (\aleph_1^{L[r]}\,< \aleph_1)}$ . We also consider real-valued games corresponding to Hausdorff gaps, and show that ${\mathsf{AD}_\mathbb{R}}$ for pointclasses (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark