1.  21
    Weak theories of concatenation and minimal essentially undecidable theories: An encounter of WTC\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathsf{WTC}}$$\end{document} and S2S\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathsf{S2S}}$$\end{document}.Kojiro Higuchi & Yoshihiro Horihata - 2014 - Archive for Mathematical Logic 53 (7-8):835-853.
    We consider weak theories of concatenation, that is, theories for strings or texts. We prove that the theory of concatenation WTC-ε\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathsf{WTC}^{-\varepsilon}}$$\end{document}, which is a weak subtheory of Grzegorczyk’s theory TC-ε\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathsf{TC}^{-\varepsilon}}$$\end{document}, is a minimal essentially undecidable theory, that is, the theory WTC-ε\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathsf{WTC}^{-\varepsilon}}$$\end{document} is essentially undecidable and if one omits an axiom scheme from WTC-ε\documentclass[12pt]{minimal} \usepackage{amsmath} (...)
    Direct download (2 more)  
    Export citation  
    Bookmark   4 citations  
  2.  37
    Nonstandard second-order arithmetic and Riemannʼs mapping theorem.Yoshihiro Horihata & Keita Yokoyama - 2014 - Annals of Pure and Applied Logic 165 (2):520-551.
    In this paper, we introduce systems of nonstandard second-order arithmetic which are conservative extensions of systems of second-order arithmetic. Within these systems, we do reverse mathematics for nonstandard analysis, and we can import techniques of nonstandard analysis into analysis in weak systems of second-order arithmetic. Then, we apply nonstandard techniques to a version of Riemannʼs mapping theorem, and show several different versions of Riemannʼs mapping theorem.
    Direct download (3 more)  
    Export citation  
    Bookmark   2 citations  
  3.  29
    Weak Theories of Concatenation and Arithmetic.Yoshihiro Horihata - 2012 - Notre Dame Journal of Formal Logic 53 (2):203-222.
    We define a new theory of concatenation WTC which is much weaker than Grzegorczyk's well-known theory TC. We prove that WTC is mutually interpretable with the weak theory of arithmetic R. The latter is, in a technical sense, much weaker than Robinson's arithmetic Q, but still essentially undecidable. Hence, as a corollary, WTC is also essentially undecidable.
    Direct download (5 more)  
    Export citation  
    Bookmark   2 citations