Tasks, tools, and techniques that we perform, use, and acquire, define the elements of expertise which we value as the hallmarks of goal-driven behavior. Somehow, the creation of tools enables us to define new tasks, or is it that the envisioning of new tasks drives us to invent new tools? Or maybe it is that new tools engender new techniques which then result in new tasks? This jumble of issues will be explored and discussed in this diverse collection of papers. (...) Individually, few of the papers are related to each other by topic or by techniques of analysis. Collectively, all focus on tasks performed using tools and discuss the techniques of tool use which enable differences in performance and expertise across individuals, societies, and (even) species. -/- . (shrink)
The framework of plateaus, dips, and leaps shines light on periods when individuals may be inventing new methods of skilled performance. We begin with a review of the role performance plateaus have played in experimental psychology, human–computer interaction, and cognitive science. We then reanalyze two classic studies of individual performance to show plateaus and dips which resulted in performance leaps. For a third study, we show how the statistical methods of Changepoint Analysis plus a few simple heuristics may direct our (...) focus to periods of performance change for individuals. For the researcher, dips become the marker of exploration where performance suffers as new methods are invented and tested. Leaps mark the implementation of a successful new method and an incremental jump above the path plotted by smooth and steady log–log performance increments. The methods developed during these dips and leaps are the key to surpassing one's teachers and acquiring extreme expertise. (shrink)
Tetris provides a difficult, dynamic task environment within which some people are novices and others, after years of work and practice, become extreme experts. Here we study two core skills; namely, choosing the goal or objective function that will maximize performance and a feature-based analysis of the current game board to determine where to place the currently falling zoid so as to maximize the goal. In Study 1, we build cross-entropy reinforcement learning models to determine whether different goals result in (...) different feature weights. Two of these optimization strategies quickly rise to performance plateaus, whereas two others continue toward higher but more jagged heights. In Study 2, we compare the zoid placement decisions made by our best CERL models with those made by 67 human players. Across 370,131 human game episodes, two CERL models picked the same zoid placements as our lowest scoring human for 43% of the placements and as our three best scoring experts for 65% of the placements. Our findings suggest that people focus on maximizing points, not number of lines cleared or number of levels reached. They also show that goal choice influences the choice of zoid placements for CERLs and suggest that the same is true of humans. Tetris has a repetitive task structure that makes Tetris more tractable and more like a traditional experimental psychology paradigm than many more complex games or tasks. Hence, although complex, Tetris is not overwhelmingly complex and presents a right-sized challenge to cognitive theories, especially those of integrated cognitive systems. (shrink)
Tetris provides a difficult, dynamic task environment within which some people are novices and others, after years of work and practice, become extreme experts. Here we study two core skills; namely, choosing the goal or objective function that will maximize performance and a feature-based analysis of the current game board to determine where to place the currently falling zoid so as to maximize the goal. In Study 1, we build cross-entropy reinforcement learning models to determine whether different goals result in (...) different feature weights. Two of these optimization strategies quickly rise to performance plateaus, whereas two others continue toward higher but more jagged heights. In Study 2, we compare the zoid placement decisions made by our best CERL models with those made by 67 human players. Across 370,131 human game episodes, two CERL models picked the same zoid placements as our lowest scoring human for 43% of the placements and as our three best scoring experts for 65% of the placements. Our findings suggest that people focus on maximizing points, not number of lines cleared or number of levels reached. They also show that goal choice influences the choice of zoid placements for CERLs and suggest that the same is true of humans. Tetris has a repetitive task structure that makes Tetris more tractable and more like a traditional experimental psychology paradigm than many more complex games or tasks. Hence, although complex, Tetris is not overwhelmingly complex and presents a right-sized challenge to cognitive theories, especially those of integrated cognitive systems. (shrink)
Reinforcement learning approaches to cognitive modeling represent task acquisition as learning to choose the sequence of steps that accomplishes the task while maximizing a reward. However, an apparently unrecognized problem for modelers is choosing when, what, and how much to reward; that is, when (the moment: end of trial, subtask, or some other interval of task performance), what (the objective function: e.g., performance time or performance accuracy), and how much (the magnitude: with binary, categorical, or continuous values). In this article, (...) we explore the problem space of these three parameters in the context of a task whose completion entails some combination of 36 state–action pairs, where all intermediate states (i.e., after the initial state and prior to the end state) represent progressive but partial completion of the task. Different choices produce profoundly different learning paths and outcomes, with the strongest effect for moment. Unfortunately, there is little discussion in the literature of the effect of such choices. This absence is disappointing, as the choice of when, what, and how much needs to be made by a modeler for every learning model. (shrink)
Visual working memory is a construct hypothesized to store a small amount of accurate perceptual information that can be brought to bear on a task. Much research concerns the construct's capacity and the precision of the information stored. Two prominent theories of VWM representation have emerged: slot-based and continuous-resource mechanisms. Prior modeling work suggests that a continuous resource that varies over trials with variable capacity and a potential to make localization errors best accounts for the empirical data. Questions remain regarding (...) the variability in VWM capacity and precision. Using a novel eye-tracking paradigm, we demonstrate that VWM facilitates search and exhibits effects of fixation frequency and recency, particularly for prior targets. Whereas slot-based memory models cannot account for the human data, a novel continuous-resource model does capture the behavioral and eye tracking data, and identifies the relevant resource as item activation. (shrink)
Why games? How could anyone consider action games an experimental paradigm for Cognitive Science? In 1973, as one of three strategies he proposed for advancing Cognitive Science, Allen Newell exhorted us to “accept a single complex task and do all of it.” More specifically, he told us that rather than taking an “experimental psychology as usual approach,” we should “focus on a series of experimental and theoretical studies around a single complex task” so as to demonstrate that our theories of (...) human cognition were powerful enough to explain “a genuine slab of human behavior” with the studies fitting into a detailed theoretical picture. Action games represent the type of experimental paradigm that Newell was advocating and the current state of programming expertise and laboratory equipment, along with the emergence of Big Data and naturally occurring datasets, provide the technologies and data needed to realize his vision. Action games enable us to escape from our field's regrettable focus on novice performance to develop theories that account for the full range of expertise through a twin focus on expertise sampling and longitudinal studies of simple and complex tasks. (shrink)
How can we study bounded rationality? We answer this question by proposing rational task analysis —a systematic approach that prevents experimental researchers from drawing premature conclusions regarding the rationality of agents. RTA is a methodology and perspective that is anchored in the notion of bounded rationality and aids in the unbiased interpretation of results and the design of more conclusive experimental paradigms. RTA focuses on concrete tasks as the primary interface between agents and environments and requires explicating essential task elements, (...) specifying rational norms, and bracketing the range of possible performance, before contrasting various benchmarks with actual performance. After describing RTA’s core components we illustrate its use in three case studies that examine human memory updating, multitasking behavior, and melioration. We discuss RTA’s characteristic elements and limitations by comparing it to related approaches. We conclude that RTA provides a useful tool to render the study of bounded rationality more transparent and less prone to theoretical confusion. (shrink)
Reinforcement learning (RL) models of decision-making cannot account for human decisions in the absence of prior reward or punishment. We propose a mechanism for choosing among available options based on goal-option association strengths, where association strengths between objects represent previously experienced object proximity. The proposed mechanism, Goal-Proximity Decision-making (GPD), is implemented within the ACT-R cognitive framework. GPD is found to be more efficient than RL in three maze-navigation simulations. GPD advantages over RL seem to grow as task difficulty is increased. (...) An experiment is presented where participants are asked to make choices in the absence of prior reward. GPD captures human performance in this experiment better than RL. (shrink)