This paper introduces new logical systems which axiomatize a formal representation of inconsistency (here taken to be equivalent to contradictoriness) in classical logic. We start from an intuitive semantical account of inconsistent data, fixing some basic requirements, and provide two distinct sound and complete axiomatics for such semantics, LFI1 and LFI2, as well as their first-order extensions, LFI1* and LFI2*, depending on which additional requirements are considered. These formal systems are examples of what we dub Logics of Formal Inconsistency (LFI) (...) and form part of a much larger family of similar logics. We also show that there are translations from classical and paraconsistent first-order logics into LFI1* and LFI2*, and back. Hence, despite their status as subsystems of classical logic, LFI1* and LFI2* can codify any classical or paraconsistent reasoning. (shrink)
In the last two decades modal logic has undergone an explosive growth, to thepointthatacompletebibliographyofthisbranchoflogic,supposingthat someone were capable to compile it, would?ll itself a ponderous volume. What is impressive in the growth of modal logic has not been so much the quick accumulation of results but the richness of its thematic dev- opments. In the 1960s, when Kripke semantics gave new credibility to the logic of modalities? which was already known and appreciated in the Ancient and Medieval times? no one could (...) have foreseen that in a short time modal logic would become a lively source of ideas and methods for analytical philosophers,historians of philosophy,linguists, epistemologists and computer scientists. The aim which oriented the composition of this book was not to write a new manual of modal logic buttoo?ertoeveryreader,evenwithnospeci?cbackground in logic, a conceptually linear path in the labyrinth of the current panorama of modal logic. The notion which in our opinion looked suitable to work as a compass in this enterprise was the notion of multimodality, or, more speci?cally, the basic idea of grounding systems on languages admitting more than one primitive modal operator. (shrink)
his paper presents a unified treatment of the propositional and first-order many-valued logics through the method of tableaux. It is shown that several important results on the proof theory and model theory of those logics can be obtained in a general way. We obtain, in this direction, abstract versions of the completeness theorem, model existence theorem (using a generalization of the classical analytic consistency properties), compactness theorem and Lowenheim-Skolem theorem. The paper is completely self-contained and includes examples of application to (...) particular many-valued formal systems. (shrink)
After a brief promenade on the several notions of translations that appear in the literature, we concentrate on three paradigms of translations between logics: ( conservative ) translations , transfers and contextual translations . Though independent, such approaches are here compared and assessed against questions about the meaning of a translation and about comparative strength and extensibility of a logic with respect to another.
This article introduces the three-valuedweakly-intuitionistic logicI 1 as a counterpart of theparaconsistent calculusP 1 studied in [11].I 1 is shown to be complete with respect to certainthree-valued matrices. We also show that in the sense that any proper extension ofI 1 collapses to classical logic.The second part shows thatI 1 is algebraizable in the sense of Block and Pigozzi (cf. [2]) in a way very similar to the algebraization ofP 1 given in [8].
This paper discusses how to define logics as deductive limits of sequences of other logics. The case of da Costa's hierarchy of increasingly weaker paraconsistent calculi, known as $ \mathcal {C}$n, 1 $ \leq$ n $ \leq$ $ \omega$, is carefully studied. The calculus $ \mathcal {C}$$\scriptstyle \omega$, in particular, constitutes no more than a lower deductive bound to this hierarchy and differs considerably from its companions. A long standing problem in the literature (open for more than 35 years) is (...) to define the deductive limit to this hierarchy, that is, its greatest lower deductive bound. The calculus $ \mathcal {C}$min, stronger than $ \mathcal {C}$$\scriptstyle \omega$, is first presented as a step toward this limit. As an alternative to the bivaluation semantics of $ \mathcal {C}$min presented thereupon, possible-translations semantics are then introduced and suggested as the standard technique both to give this calculus a more reasonable semantics and to derive some interesting properties about it. Possible-translations semantics are then used to provide both a semantics and a decision procedure for $ \mathcal {C}$Lim, the real deductive limit of da Costa's hierarchy. Possible-translations semantics also make it possible to characterize a precise sense of duality: as an example, $ \mathcal {D}$min is proposed as the dual to $ \mathcal {C}$min. (shrink)
This book is dedicated to a classic presentation of the theory of computable functions in the context of the foundations of mathematics. Part I motivates the study of computability with discussions and readings about the crisis in the foundations of mathematics in the early 20th century, while presenting the basic ideas of whole number, function, proof, and real number. Part II starts with readings from Turing and Post leading to the formal theory of recursive functions. Part III presents sufficient formal (...) logic to give a full development of Gödel's incompleteness theorems. Part IV considers the significance of the technical work with a discussion of Church's Thesis and readings on the foundations of mathematics. This new edition contains the timeline "Computability and Undecidability" as well as the essay "On mathematics". (shrink)
The main objective o f this descriptive paper is to present the general notion of translation between logical systems as studied by the GTAL research group, as well as its main results, questions, problems and indagations. Logical systems here are defined in the most general sense, as sets endowed with consequence relations; translations between logical systems are characterized as maps which preserve consequence relations (that is, as continuous functions between those sets). In this sense, logics together with translations form a (...) bicomplete category of which topological spaces with topological continuous functions constitute a full subcategory. We also describe other uses of translations in providing new semantics for non-classical logics and in investigating duality between them. An important subclass of translations, the conservative translations, which strongly preserve consequence relations, is introduced and studied. Some specific new examples of translations involving modal logics, many-valued logics, para- consistent logics, intuitionistic and classical logics are also described. (shrink)
We propose in this paper a family of algebraic models of ZFC based on the three-valued paraconsistent logic LPT0, a linguistic variant of da Costa and D’Ottaviano’s logic J3. The semantics is given by twist structures defined over complete Boolean agebras. The Boolean-valued models of ZFC are adapted to twist-valued models of an expansion of ZFC by adding a paraconsistent negation. This allows for inconsistent sets w satisfying ‘not (w = w)’, where ‘not’ stands for the paraconsistent negation. Finally, our (...) framework is adapted to provide a class of twist-valued models generalizing Löwe and Tarafder’s model based on logic (PS 3,∗), showing that they are paraconsistent models of ZFC. The present approach offers more options for investigating independence results in paraconsistent set theory. (shrink)
Being a pragmatic and not a referential approach tosemantics, the dialogical formulation ofparaconsistency allows the following semantic idea tobe expressed within a semi-formal system: In anargumentation it sometimes makes sense to distinguishbetween the contradiction of one of the argumentationpartners with himself (internal contradiction) and thecontradiction between the partners (externalcontradiction). The idea is that externalcontradiction may involve different semantic contextsin which, say A and ¬A have been asserted.The dialogical approach suggests a way of studying thedynamic process of contradictions through which thetwo (...) contexts evolve for the sake of argumentation intoone system containing both contexts.More technically, we show a new, dialogical, way tobuild paraconsistent systems for propositional andfirst-order logic with classical and intuitionisticfeatures (i.e. paraconsistency both with and withouttertium non-datur) and present theircorresponding tableaux. (shrink)
Fibring is recognized as one of the main mechanisms in combining logics, with great signicance in the theory and applications of mathematical logic. However, an open challenge to bring is posed by the collapsing problem: even when no symbols are shared, certain combinations of logics simply collapse to one of them, indicating that bring imposes unwanted interconnections between the given logics. Modulated bring allows a ner control of the combination, solving the collapsing problem both at the semantic and deductive levels. (...) Main properties like soundness and completeness are shown to be preserved, comparison with bring is discussed, and some important classes of examples are analyzed with respect to the collapsing problem. (shrink)
In this paper we propose a very general de nition of combination of logics by means of the concept of sheaves of logics. We first discuss some properties of this general definition and list some problems, as well as connections to related work. As applications of our abstract setting, we show that the notion of possible-translations semantics, introduced in previous papers by the first author, can be described in categorial terms. Possible-translations semantics constitute illustrative cases, since they provide a new (...) semantical account for abstract logical systems, particularly for many-valued and paraconsistent logics. (shrink)
The prepositional calculiC n , 1 n introduced by N.C.A. da Costa constitute special kinds of paraconsistent logics. A question which remained open for some time concerned whether it was possible to obtain a Lindenbaum''s algebra forC n . C. Mortensen settled the problem, proving that no equivalence relation forC n . determines a non-trivial quotient algebra.The concept of da Costa algebra, which reflects most of the logical properties ofC n , as well as the concept of paraconsistent closure system, (...) are introduced in this paper. (shrink)
This paper briefly outlines some advancements in paraconsistent logics for modelling knowledge representation and reasoning. Emphasis is given on the so-called Logics of Formal Inconsistency (LFIs), a class of paraconsistent logics that formally internalize the very concept(s) of consistency and inconsistency. A couple of specialized systems based on the LFIs will be reviewed, including belief revision and probabilistic reasoning. Potential applications of those systems in the AI area of KRR are tackled by illustrating some examples that emphasizes the importance of (...) a fine-tuned treatment of consistency in modelling reputation systems, preferences, argumentation, and evidence. (shrink)
There are two foundational, but not fully developed, ideas in paraconsistency, namely, the duality between paraconsistent and intuitionistic paradigms, and the introduction of logical operators that express meta-logical notions in the object language. The aim of this paper is to show how these two ideas can be adequately accomplished by the Logics of Formal Inconsistency (LFIs) and by the Logics of Formal Undeterminedness (LFUs). LFIs recover the validity of the principle of explosion in a paraconsistent scenario, while LFUs recover the (...) validity of the principle of excluded middle in a paracomplete scenario. We introduce definitions of duality between inference rules and connectives that allow comparing rules and connectives that belong to different logics. Two formal systems are studied, the logics mbC and mbD, that display the duality between paraconsistency and paracompleteness as a duality between inference rules added to a common core– in the case studied here, this common core is classical positive propositional logic (CPL + ). The logics mbC and mbD are equipped with recovery operators that restore classical logic for, respectively, consistent and determined propositions. These two logics are then combined obtaining a pair of logics of formal inconsistency and undeterminedness (LFIUs), namely, mbCD and mbCDE. The logic mbCDE exhibits some nice duality properties. Besides, it is simultaneously paraconsistent and paracomplete, and able to recover the principles of excluded middle and explosion at once. The last sections offer an algebraic account for such logics by adapting the swap-structures semantics framework of the LFIs the LFUs. This semantics highlights some subtle aspects of these logics, and allows us to prove decidability by means of finite non-deterministic matrices. (shrink)
Several types of polarized partition relations are considered. In particular we deal with partitions defined on cartesian products of more than two factors. MSC: 03E05.
How is it possible that beginning from the negation of rational thoughts one comes to produce knowledge? This problem, besides its intrinsic interest, acquires a great relevance when the representation of a knowledge is settled, for example, on data and automatic reasoning. Many treatment ways have been tried, as in the case of the non-monotonic logics; logics that intend to formalize an idea of reasoning by default, etc. These attempts are incomplete and are subject to failure. A possible solution would (...) be to formulate a logic of the irrational, which offers a model for reasoning permitting to support contradictions as well as to produce knowledge from such situations. An intuition underlying the foundation of such a logic consists of the da Costa's paraconsistent logics presenting however, a different deduction theory and a whole distinct semantics, called here "the semantics of possible translations". The present proposing, following our argumentation, intends to enlight all this question, by a whole satisfactory logical point of view, being practically applicable and philosophically acceptable.Como é possível que a partir da negação do racional se possa obter conhecimento adicional? Esse problema, além de seu interesse intrínseco, adquire uma relevância adicional quando o encontramos na representação do conhecimento em bases de dados e raciocínio automático, por exemplo. Nesse caso, diversas tentativas de tratamento têm sido propostas, como as lógicas não-monotônicas, as lógicas que tentam formalizar a ideia do raciocínio por falha . Tais tentativas de solução, porém, são falhas e incompletas; proponho que uma solução possível seria formular uma lógica do irracional, que oferecesse um modelo para o raciocínio permitindo não só suportar contradições, como conseguir obter conhecimento, a partir de tais situações. A intuição subjacente à formulação de tal lógica são as lógicas paraconsistentes de da Costa, mas com uma teoria da dedução diferente e uma semântica completamente distinta . Tal proposta, como pretendo argumentar, fornece um enfoque para a questão que é ao mesmo tempo completamente satisfatório, aplicável do ponto de vista prático e aceitável do ponto de vista filosófico. (shrink)
Proceedings of the Tenth Brazilian Conference on Mathematical Logic. Coleção CLE, volume 14, 1995. Centro De Lógica, Epistemologia e História da Ciência, Unicamp, Campinas, SP, Brazil.
This impressive compilation of the material presented at the Second World Congress on Paraconsistency held in Juquehy-Sao Sebastião, São Paulo, Brazil, represents an integrated discussion of all major topics in the area of paraconsistent logic---highlighting philosophical and historical aspects, major developments and real-world applications.
“Trends in Logic XVI: Consistency, Contradiction, Paraconsistency, and Reasoning - 40 years of CLE” is being organized by the Centre for Logic, Epistemology and the History of Science at the State University of Campinas (CLEUnicamp) from September 12th to 15th, 2016, with the auspices of the Brazilian Logic Society, Studia Logica and the Polish Academy of Sciences. The conference is intended to celebrate the 40th anniversary of CLE, and is centered around the areas of logic, epistemology, philosophy and history of (...) science, while bringing together scholars in the fields of philosophy, logic, mathematics, computer science and other disciplines who have contributed significantly to what Studia Logica is today and to what CLE has achieved in its four decades of existence. It intends to celebrate CLE’s strong influence in Brazil and Latin America and the tradition of investigating formal methods inspired by, and devoted to, philosophical views, as well as philosophical problems approached by means of formal methods. The title of the event commemorates one of the three main areas of CLE, what has been called the “Brazilian school of paraconsistency”, combining such a pluralist view about logic and reasoning. (shrink)
This paper investigates a problem related to quantifiers which has some analogies to that of propositional completeness I give a definition of quantifier in many-valued logics generalizing the cases which already occur in first order many- valued logics. Though other definitions are possible, this particular one, which I call distribution quantifiers, generalizes the classical quantifiers in a very natural way, and occurs in finite numbers in every m-valued logic. We then call the problem of quantificationa2 completeness in m-valued logic the (...) problem of characterizing which are the quantifiers in a given language which can generate all other quantifiers in this language, using the connectives, as is the case, for example, of the universal and exis- tential quantifiers in classical logic, using negation. We are interested, in particular, in those many-valued quantifiers which closely mimic the behavior of existential an universal quantifiers in generating all other quantifiers using negation: these I call perfect quantifiers, as defined below. The main result of this paper is the characterization of all perfect quantifiers in 3-valued logics, which are complete if the logic is functionally complete. As a byproduct, we obtain the same result for the classical logic, which we include mainly for motivation. (shrink)
We prove that the minimal Logic of Formal Inconsistency $\mathsf{QmbC}$ validates a weaker version of Fraïssé’s theorem. LFIs are paraconsistent logics that relativize the Principle of Explosion only to consistent formulas. Now, despite the recent interest in LFIs, their model-theoretic properties are still not fully understood. Our aim in this paper is to investigate the situation. Our interest in FT has to do with its fruitfulness; the preservation of FT indicates that a number of other classical semantic properties can be (...) also salvaged in LFIs. Further, given that FT depends on truth-functionality, whether full FT holds for $\mathsf{QmbC}$ becomes a challenging question. (shrink)
This is a review of Yves Nievergelt, Foundations of Logic and Mathematics: Applications to Computer Science and Cryptography, Birkäuser Verlag, Boston, 2002, €90, pp. 480, ISBN 0-8176-4249-8, hardcover.
This volume presents the proceedings from the Eleventh Brazilian Logic Conference on Mathematical Logic held by the Brazilian Logic Society (co-sponsored by the Centre for Logic, Epistemology and the History of Science, State University of Campinas, Sao Paulo) in Salvador, Bahia, Brazil. The conference and the volume are dedicated to the memory of professor Mario Tourasse Teixeira, an educator and researcher who contributed to the formation of several generations of Brazilian logicians. Contributions were made from leading Brazilian logicians and their (...) Latin-American and European colleagues. All papers were selected by a careful refereeing processs and were revised and updated by their authors for publication in this volume. There are three sections: Advances in Logic, Advances in Theoretical Computer Science, and Advances in Philosophical Logic. Well-known specialists present original research on several aspects of model theory, proof theory, algebraic logic, category theory, connections between logic and computer science, and topics of philosophical logic of current interest. Topics interweave proof-theoretical, semantical, foundational, and philosophical aspects with algorithmic and algebraic views, offering lively high-level research results. (shrink)
This paper introduces the notions of perfect quantifiers in general many-valued logics and investigates the problem of quantificational completeness for such logics as well as the problem of characterizing all perfect quantifiers in 3-valued logics using techniques of combinatorial group theory.