11 found
Order:
Disambiguations
Vassily Lyubetsky [10]Vassily A. Lyubetsky [1]
  1.  5
    A Groszek‐Laver Pair of Undistinguishable ‐Classes.Mohammad Golshani, Vladimir Kanovei & Vassily Lyubetsky - 2017 - Mathematical Logic Quarterly 63 (1-2):19-31.
    No categories
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   7 citations  
  2.  18
    A Definable E 0 Class Containing No Definable Elements.Vladimir Kanovei & Vassily Lyubetsky - 2015 - Archive for Mathematical Logic 54 (5-6):711-723.
    A generic extension L[x]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbf{L}[x]}$$\end{document} by a real x is defined, in which the E0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathsf{E}_0}$$\end{document}-class of x is a lightface Π21\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\it \Pi}^1_2}$$\end{document} set containing no ordinal-definable reals.
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   7 citations  
  3.  9
    Countable OD Sets of Reals Belong to the Ground Model.Vladimir Kanovei & Vassily Lyubetsky - 2018 - Archive for Mathematical Logic 57 (3-4):285-298.
    It is true in the Cohen, Solovay-random, dominaning, and Sacks generic extension, that every countable ordinal-definable set of reals belongs to the ground universe. It is true in the Solovay collapse model that every non-empty OD countable set of sets of reals consists of \ elements.
    No categories
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   4 citations  
  4.  9
    Minimal Axiomatic Frameworks for Definable Hyperreals with Transfer.Frederik S. Herzberg, Vladimir Kanovei, Mikhail Katz & Vassily Lyubetsky - 2018 - Journal of Symbolic Logic 83 (1):385-391.
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  5.  12
    DefinableE0classes at Arbitrary Projective Levels.Vladimir Kanovei & Vassily Lyubetsky - 2018 - Annals of Pure and Applied Logic 169 (9):851-871.
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  6.  13
    Counterexamples to Countable-Section Π21 Uniformization and Π31 Separation.Vladimir Kanovei & Vassily Lyubetsky - 2016 - Annals of Pure and Applied Logic 167 (3):262-283.
  7.  7
    Definable Minimal Collapse Functions at Arbitrary Projective Levels.Vladimir Kanovei & Vassily Lyubetsky - 2019 - Journal of Symbolic Logic 84 (1):266-289.
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  8.  39
    The Origin of Metazoa: A Transition From Temporal to Spatial Cell Differentiation.Kirill V. Mikhailov, Anastasiya V. Konstantinova, Mikhail A. Nikitin, Peter V. Troshin, Leonid Yu Rusin, Vassily A. Lyubetsky, Yuri V. Panchin, Alexander P. Mylnikov, Leonid L. Moroz, Sudhir Kumar & Vladimir V. Aleoshin - 2009 - Bioessays 31 (7):758-768.
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  9.  9
    The Full Basis Theorem Does Not Imply Analytic Wellordering.Vladimir Kanovei & Vassily Lyubetsky - 2021 - Annals of Pure and Applied Logic 172 (4):102929.
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  10.  13
    On Effective Σ‐Boundedness and Σ‐Compactness.Vladimir Kanovei & Vassily Lyubetsky - 2013 - Mathematical Logic Quarterly 59 (3):147-166.
  11.  2
    Canonization of Smooth Equivalence Relations on Infinite-Dimensional $Mathsf{E}_{0}$-Large Products.Vladimir Kanovei & Vassily Lyubetsky - 2020 - Notre Dame Journal of Formal Logic 61 (1):117-128.
    We propose a canonization scheme for smooth equivalence relations on Rω modulo restriction to E0-large infinite products. It shows that, given a pair of Borel smooth equivalence relations E, F on Rω, there is an infinite E0-large perfect product P⊆Rω such that either F⊆E on P, or, for some ℓ<ω, the following is true for all x,y∈P: xEy implies x=y, and x↾=y↾ implies xFy.
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark