Order:
Disambiguations
Tepper L. Gill [4]Tepper Gill [1]
  1.  25
    The Classical Electron Problem.Tepper L. Gill, W. W. Zachary & J. Lindesay - 2001 - Foundations of Physics 31 (9):1299-1355.
    In this paper, we construct a parallel image of the conventional Maxwell theory by replacing the observer-time by the proper-time of the source. This formulation is mathematically, but not physically, equivalent to the conventional form. The change induces a new symmetry group which is distinct from, but closely related to the Lorentz group, and fixes the clock of the source for all observers. The new wave equation contains an additional term (dissipative), which arises instantaneously with acceleration. This shows that the (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   4 citations  
  2. Canonical Proper Time Formulation for Physical Systems.James Lindesay & Tepper Gill - 2004 - Foundations of Physics 34 (1):169-182.
    The canonical proper time formulation of relativistic dynamics provides a framework from which one can describe the dynamics of classical and quantum systems using the clock of those very systems. The framework utilizes a canonical transformation on the time variable that is used to describe the dynamics, and does not transform other dynamical variables such as momenta or positions. This means that the time scales of the dynamics are described in terms of the natural local time coordinates, which is the (...)
    Direct download (6 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  3.  94
    Canonical Proper-Time Dirac Theory.Tepper L. Gill - 1998 - Foundations of Physics 28 (10):1561-1575.
    In this paper, we report on a new approach to relativistic quantum theory. The classical theory is derived from a new implementation of the first two postulates of Einstein, which fixes the proper-time of the physical system of interest for all observers. This approach leads to a new group that we call the proper-time group. We then construct a canonical contact transformation on extended phase space to identify the canonical Hamiltonian associated with the proper-time variable. On quantization we get a (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark  
  4.  14
    Dual Relativistic Quantum Mechanics I.Tepper L. Gill, Gonzalo Ares de Parga, Trey Morris & Mamadou Wade - 2022 - Foundations of Physics 52 (4):1-21.
    It was shown in Dirac A117, 610; A118, 351, 1928) that the ultra-violet divergence in quantum electrodynamics is caused by a violation of the time-energy uncertainly relationship, due to the implicit assumption of infinitesimal time information. In Wheeler et al. it was shown that Einstein’s special theory of relativity and Maxwell’s field theory have mathematically equivalent dual versions. The dual versions arise from an identity relating observer time to proper time as a contact transformation on configuration space, which leaves phase (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  5.  44
    Two Mathematically Equivalent Versions of Maxwell’s Equations.Tepper L. Gill & Woodford W. Zachary - 2011 - Foundations of Physics 41 (1):99-128.
    This paper is a review of the canonical proper-time approach to relativistic mechanics and classical electrodynamics. The purpose is to provide a physically complete classical background for a new approach to relativistic quantum theory. Here, we first show that there are two versions of Maxwell’s equations. The new version fixes the clock of the field source for all inertial observers. However now, the (natural definition of the effective) speed of light is no longer an invariant for all observers, but depends (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   1 citation