Results for 'Semimeasure'

4 found
Order:
  1.  68
    The Semimeasure Property of Algorithmic Probability -- “Feature‘ or “Bug‘?Douglas Campbell - 2013 - In David L. Dowe (ed.), Algorithmic Probability and Friends. Bayesian Prediction and Artificial Intelligence: Papers From the Ray Solomonoff 85th Memorial Conference, Melbourne, Vic, Australia, November 30 -- December 2, 2011. Springer. pp. 79--90.
    An unknown process is generating a sequence of symbols, drawn from an alphabet, A. Given an initial segment of the sequence, how can one predict the next symbol? Ray Solomonoff’s theory of inductive reasoning rests on the idea that a useful estimate of a sequence’s true probability of being outputted by the unknown process is provided by its algorithmic probability (its probability of being outputted by a species of probabilistic Turing machine). However algorithmic probability is a “semimeasure”: i.e., the (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  2.  25
    Randomness and Semimeasures.Laurent Bienvenu, Rupert Hölzl, Christopher P. Porter & Paul Shafer - 2017 - Notre Dame Journal of Formal Logic 58 (3):301-328.
    A semimeasure is a generalization of a probability measure obtained by relaxing the additivity requirement to superadditivity. We introduce and study several randomness notions for left-c.e. semimeasures, a natural class of effectively approximable semimeasures induced by Turing functionals. Among the randomness notions we consider, the generalization of weak 2-randomness to left-c.e. semimeasures is the most compelling, as it best reflects Martin-Löf randomness with respect to a computable measure. Additionally, we analyze a question of Shen, a positive answer to which (...)
    Direct download (7 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  3.  9
    A generalized characterization of algorithmic probability.Tom F. Sterkenburg - 2017 - Theory of Computing Systems 61 (4):1337-1352.
    An a priori semimeasure (also known as “algorithmic probability” or “the Solomonoff prior” in the context of inductive inference) is defined as the transformation, by a given universal monotone Turing machine, of the uniform measure on the infinite strings. It is shown in this paper that the class of a priori semimeasures can equivalently be defined as the class of transformations, by all compatible universal monotone Turing machines, of any continuous computable measure in place of the uniform measure. Some (...)
    Direct download  
     
    Export citation  
     
    Bookmark  
  4.  10
    Degrees of randomized computability.Rupert Hölzl & Christopher P. Porter - 2022 - Bulletin of Symbolic Logic 28 (1):27-70.
    In this survey we discuss work of Levin and V’yugin on collections of sequences that are non-negligible in the sense that they can be computed by a probabilistic algorithm with positive probability. More precisely, Levin and V’yugin introduced an ordering on collections of sequences that are closed under Turing equivalence. Roughly speaking, given two such collections $\mathcal {A}$ and $\mathcal {B}$, $\mathcal {A}$ is below $\mathcal {B}$ in this ordering if $\mathcal {A}\setminus \mathcal {B}$ is negligible. The degree structure associated (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark