By constructing a maximal incomplete d.r.e. degree, the nondensity of the partial order of the d.r.e. degrees is established. An easy modification yields the nondensity of the n-r.e. degrees and of the ω-r.e. degrees.
By constructing a maximal incomplete d.r.e. degree, the nondensity of the partial order of the d.r.e. degrees is established. An easy modification yields the nondensity of the n-r.e. degrees and of the ω-r.e. degrees.
We construct the set of the title, answering a question of Cholak, Jockusch, and Slaman [1], and discuss its connections with the study of the proof-theoretic strength and effective content of versions of Ramsey's Theorem. In particular, our result implies that every ω-model of RCA 0 + SRT 2 2 must contain a nonlow set.
We exhibit a finite lattice without critical triple that cannot be embedded into the enumerable Turing degrees. Our method promises to lead to a full characterization of the finite lattices embeddable into the enumerable Turing degrees.
We give an algorithm for deciding whether an embedding of a finite partial order [Formula: see text] into the enumeration degrees of the [Formula: see text]-sets can always be extended to an embedding of a finite partial order [Formula: see text].
We characterize the structure of computably categorical trees of finite height, and prove that our criterion is both necessary and sufficient. Intuitively, the characterization is easiest to express in terms of isomorphisms of (possibly infinite) trees, but in fact it is equivalent to a Σ03-condition. We show that all trees which are not computably categorical have computable dimension ω. Finally, we prove that for every n≥ 1 in ω, there exists a computable tree of finite height which is δ0n+1-categorical but (...) not δ0n-categorical. (shrink)
We prove that a enumerable degree is contiguous iff it is locally distributive. This settles a twenty-year old question going back to Ladner and Sasso. We also prove that strong contiguity and contiguity coincide, settling a question of the first author, and prove that no $m$-topped degree is contiguous, settling a question of the first author and Carl Jockusch [11]. Finally, we prove some results concerning local distributivity and relativized weak truth table reducibility.
Hirschfeldt and Shore have introduced a notion of stability for infinite posets. We define an arguably more natural notion called weak stability, and we study the existence of infinite computable or low chains or antichains, and of infinite $\Pi _1^0 $ chains and antichains, in infinite computable stable and weakly stable posets. For example, we extend a result of Hirschfeldt and Shore to show that every infinite computable weakly stable poset contains either an infinite low chain or an infinite computable (...) antichain. Our hardest result is that there is an infinite computable weakly stable poset with no infinite $\Pi _1^0 $ chains or antichains. On the other hand, it is easily seen that every infinite computable stable poset contains an infinite computable chain or an infinite $\Pi _1^0 $ antichain. In Reverse Mathematics, we show that SCAC, the principle that every infinite stable poset contains an infinite chain or antichain, is equivalent over RCA₀ to WSCAC, the corresponding principle for weakly stable posets. (shrink)
Khutoretskii's Theorem states that the Rogers semilattice of any family of c.e. sets has either at most one or infinitely many elements. A lemma in the inductive step of the proof shows that no Rogers semilattice can be partitioned into a principal ideal and a principal filter. We show that such a partitioning is possible for some family of d.c.e. sets. In fact, we construct a family of c.e. sets which, when viewed as a family of d.c.e. sets, has (up (...) to equivalence) exactly two computable Friedberg numberings ¼ and ν, and ¼ reduces to any computable numbering not equivalent to ν. The question of whether the full statement of Khutoretskii's Theorem fails for families of d.c.e. sets remains open. (shrink)
This paper considers reductions between types of numberings; these reductions preserve the Rogers Semilattice of the numberings reduced and also preserve the number of minimal and positive degrees in their semilattice. It is shown how to use these reductions to simplify some constructions of specific semilattices. Furthermore, it is shown that for the basic types of numberings, one can reduce the left-r.e. numberings to the r.e. numberings and the k-r.e. numberings to the k+1-r.e. numberings; all further reductions are obtained by (...) concatenating these reductions. (shrink)
We explore the problem of constructing maximal and unbounded filters on computable posets. We obtain both computability results and reverse mathematics results. A maximal filter is one that does not extend to a larger filter. We show that every computable poset has a \Delta^0_2 maximal filter, and there is a computable poset with no \Pi^0_1 or \Sigma^0_1 maximal filter. There is a computable poset on which every maximal filter is Turing complete. We obtain the reverse mathematics result that the principle (...) "every countable poset has a maximal filter" is equivalent to ACA₀ over RCA₀. An unbounded filter is a filter which achieves each of its lower bounds in the poset. We show that every computable poset has a \Sigma^0_1 unbounded filter, and there is a computable poset with no \Pi^0_1 unbounded filter. We show that there is a computable poset on which every unbounded filter is Turing complete, and the principle "every countable poset has an unbounded filter" is equivalent to ACA₀ over RCA₀. We obtain additional reverse mathematics results related to extending arbitrary filters to unbounded filters and forming the upward closures of subsets of computable posets. (shrink)
We show that the Π 4 -theory of the partial order of recursively enumerable weak truth-table degrees is undecidable, and give a new proof of the similar fact for r.e. T-degrees. This is accomplished by introducing a new coding scheme which consists in defining the class of finite bipartite graphs with parameters.
We solve a longstanding question of Rosenstein, and make progress toward solving a longstanding open problem in the area of computable linear orderings by showing that every computable ƞ-like linear ordering without an infinite strongly ƞ-like interval has a computable copy without nontrivial computable self-embedding. The precise characterization of those computable linear orderings which have computable copies without nontrivial computable self-embedding remains open.
The degrees of unsolvability were introduced in the ground-breaking papers of Post [20] and Kleene and Post [7] as an attempt to measure theinformation contentof sets of natural numbers. Kleene and Post were interested in the relative complexity of decision problems arising naturally in mathematics; in particular, they wished to know when a solution to one decision problem contained the information necessary to solve a second decision problem. As decision problems can be coded by sets of natural numbers, this question (...) is equivalent to: Given a computer with access to an oracle which will answer membership questions about a setA, can a program be written which will correctly compute the answers to all membership questions about a setB? If the answer is yes, then we say thatBisTuring reducibletoAand writeB≤TA. We say thatB≡TAifB≤TAandA≤TB. ≡Tis an equivalence relation, and ≤Tinduces a partial ordering on the corresponding equivalence classes; the poset obtained in this way is called thedegrees of unsolvability, and elements of this poset are calleddegrees.Post was particularly interested in computability from sets which are partially generated by a computer, namely, those for which the elements of the set can be enumerated by a computer. (shrink)
In this paper, we solve a long-standing open question, about the spectrum of the successivity relation on a computable linear ordering. We show that if a computable linear ordering [Formula: see text] has infinitely many successivities, then the spectrum of the successivity relation is closed upwards in the computably enumerable Turing degrees. To do this, we use a new method of constructing [Formula: see text]-isomorphisms, which has already found other applications such as Downey, Kastermans and Lempp [9] and is of (...) independent interest. It would seem to promise many further applications. (shrink)
We give a decision procedure for the ∀∃-theory of the weak truth-table (wtt) degrees of the recursively enumerable sets. The key to this decision procedure is a characterization of the finite lattices which can be embedded into the r.e. wtt-degrees by a map which preserves the least and greatest elements: a finite lattice has such an embedding if and only if it is distributive and the ideal generated by its cappable elements and the filter generated by its cuppable elements are (...) disjoint. We formulate general criteria that allow one to conclude that a distributive upper semi-lattice has a decidable two-quantifier theory. These criteria are applied not only to the weak truth-table degrees of the recursively enumerable sets but also to various substructures of the polynomial many-one (pm) degrees of the recursive sets. These applications to the pm degrees require no new complexity-theoretic results. The fact that the pm-degrees of the recursive sets have a decidable two-quantifier theory answers a question raised by Shore and Slaman in [21]. (shrink)
We show that the $\Pi_4$-theory of the partial order of recursively enumerable weak truth-table degrees is undecidable, and give a new proof of the similar fact for r.e. T-degrees. This is accomplished by introducing a new coding scheme which consists in defining the class of finite bipartite graphs with parameters.
We study the filter ℒ*(A) of computably enumerable supersets (modulo finite sets) of an r-maximal set A and show that, for some such set A, the property of being cofinite in ℒ*(A) is still Σ0 3-complete. This implies that for this A, there is no uniformly computably enumerable “tower” of sets exhausting exactly the coinfinite sets in ℒ*(A).
Work in the setting of the recursively enumerable sets and their Turing degrees. A set X is low if X', its Turning jump, is recursive in $\varnothing'$ and high if X' computes $\varnothing''$ . Attempting to find a property between being low and being recursive, Bickford and Mills produced the following definition. W is deep, if for each recursively enumerable set A, the jump of $A \bigoplus W$ is recursive in the jump of A. We prove that there are no (...) deep degrees other than the recursive one. Given a set W, we enumerate a set A and approximate its jump. The construction of A is governed by strategies, indexed by the Turning functionals Φ. Simplifying the situation, a typical strategy converts a failure to recursively compute W into a constraint on the enumeration of A, so that $(W \bigoplus A)'$ is forced to disagree with Φ(-; A'). The conversion has some ambiguity; in particular, A cannot be found uniformly from W. We also show that there is a "moderately" deep degree: There is a low nonzero degree whose join with any other low degree is not high. (shrink)
We show that there is a strong minimal pair in the computably enumerable Turing degrees, i.e. a pair of nonzero c.e. degrees a and b such that a∩b = 0 and for any nonzero c.e. degree x ≤ a, b ∪ x ≥ a.
The tower number ${\mathfrak t}$ and the ultrafilter number $\mathfrak {u}$ are cardinal characteristics from set theory. They are based on combinatorial properties of classes of subsets of $\omega $ and the almost inclusion relation $\subseteq ^*$ between such subsets. We consider analogs of these cardinal characteristics in computability theory. We say that a sequence $(G_n)_{n \in {\mathbb N}}$ of computable sets is a tower if $G_0 = {\mathbb N}$, $G_{n+1} \subseteq ^* G_n$, and $G_n\smallsetminus G_{n+1}$ is infinite for each (...) n. A tower is maximal if there is no infinite computable set contained in all $G_n$. A tower ${\left \langle {G_n}\right \rangle }_{n\in \omega }$ is an ultrafilter base if for each computable R, there is n such that $G_n \subseteq ^* R$ or $G_n \subseteq ^* \overline R$ ; this property implies maximality of the tower. A sequence $(G_n)_{n \in {\mathbb N}}$ of sets can be encoded as the “columns” of a set $G\subseteq \mathbb N$. Our analogs of ${\mathfrak t}$ and ${\mathfrak u}$ are the mass problems of sets encoding maximal towers, and of sets encoding towers that are ultrafilter bases, respectively. The relative position of a cardinal characteristic broadly corresponds to the relative computational complexity of the mass problem. We use Medvedev reducibility to formalize relative computational complexity, and thus to compare such mass problems to known ones. We show that the mass problem of ultrafilter bases is equivalent to the mass problem of computing a function that dominates all computable functions, and hence, by Martin’s characterization, it captures highness. On the other hand, the mass problem for maximal towers is below the mass problem of computing a non-low set. We also show that some, but not all, noncomputable low sets compute maximal towers: Every noncomputable (low) c.e. set computes a maximal tower but no 1-generic $\Delta ^0_2$ -set does so. We finally consider the mass problems of maximal almost disjoint, and of maximal independent families. We show that they are Medvedev equivalent to maximal towers, and to ultrafilter bases, respectively. (shrink)
We examine the sequences A that are low for dimension, i.e. those for which the effective dimension relative to A is the same as the unrelativized effective dimension. Lowness for dimension is a weakening of lowness for randomness, a central notion in effective randomness. By considering analogues of characterizations of lowness for randomness, we show that lowness for dimension can be characterized in several ways. It is equivalent to lowishness for randomness, namely, that every Martin-Löf random sequence has effective dimension (...) 1 relative to A, and lowishness for K, namely, that the limit of KA/K is 1. We show that there is a perfect [Formula: see text]-class of low for dimension sequences. Since there are only countably many low for random sequences, many more sequences are low for dimension. Finally, we prove that every low for dimension is jump-traceable in order nε, for any ε > 0. (shrink)
We show the decidability of the existential theory of the recursively enumerable degrees in the language of Turing reducibility, Turing reducibility of the Turing jumps, and least and greatest element.
We provide three new results about interpolating 2-r.e. or 2-REA degrees between given r.e. degrees: Proposition 1.13. If c h are r.e. , c is low and h is high, then there is an a h which is REA in c but not r.e. Theorem 2.1. For all high r.e. degrees h g there is a properly d-r.e. degree a such that h a g and a is r.e. in h . Theorem 3.1. There is an incomplete nonrecursive r.e. A (...) such that every set REA in A and recursive in 0′ is of r. e. degree. The first proof is a variation on the construction of Soare and Stob . The second combines highness with a modified version of the proof strategy of Cooper et al. . The third theorem is a rather surprising result with a somewhat unusual proof strategy. Its proof is a 0‴ argument that at times moves left in the tree so that the accessible nodes are not linearly ordered at each stage. Thus the construction lacks a true path in the usual sense. Two substitute notions fill this role: The true nodes are the leftmost ones accessible infinitely often; the semitrue nodes are the leftmost ones such that there are infinitely many stages at which some extension is accessible. Another unusual feature of the construction is that it involves using distinct priority orderings to control the interactions of different parts of the construction. (shrink)
This volume contains papers from the recursion theory session of the Kazan Workshop on Recursion and Complexity Theory. Recursion theory, the study of computability, is an area of mathematical logic that has traditionally been particularly strong in the United States and the former Soviet Union. This was the first workshop ever to bring together about 50 international experts in recursion theory from the United States, the former Soviet Union and Western Europe.
Combinatorial operations on sets are almost never well defined on Turing degrees, a fact so obvious that counterexamples are worth exhibiting. The case we focus on is the symmetric-difference operator; there are pairs of degrees for which the symmetric-difference operation is well defined. Some examples can be extracted from the literature, e.g. from the existence of nonzero degrees with strong minimal covers. We focus on the case of incomparable r.e. degrees for which the symmetric-difference operation is well defined.
We show that for every nontrivial r.e. wtt-degree a, there are r.e. wtt-degrees b and c incomparable to a such that the infimum of a and b exists but the infimum of a and c fails to exist. This shows in particular that there are no strongly noncappable r.e. wtt-degrees, in contrast to the situation in the r.e. Turing degrees.
In this paper, we investigate the Lindenbaum algebra ℒ of the theory T fin = Th of the class M fin of all finite models of a finite rich signature. We prove that this algebra is an atomic Boolean algebra while its Gödel numeration γ is a [Formula: see text]-numeration. Moreover, the quotient algebra /ℱ, γ/ℱ) modulo the Fréchet ideal ℱ is a [Formula: see text]-algebra, which is universal over the class of all [Formula: see text] Boolean algebras. These conditions (...) characterize uniquely the algebra ℒ; moreover, these conditions characterize up to recursive isomorphism the numerated Boolean quotient algebra /ℱ, γ/ℱ). These results extend the work of Trakhtenbrot [17] and Vaught [18] on the first order theory of the class of all finite models of a finite rich signature. (shrink)
Answering a question of Per Lindström, we show that there is no “plus-capping” degree, i.e. that for any incomplete r.e. degreew, there is an incomplete r.e. degreea>w such that there is no r.e. degreev>w witha∩v=w.
We characterize the linear order types $\tau $ with the property that given any countable linear order $\mathcal {L}$, $\tau \cdot \mathcal {L}$ is a computable linear order iff $\mathcal {L}$ is a computable linear order, as exactly the finite nonempty order types.