Defining the degree of categoricity of a computable structure ${\mathcal{M}}$ to be the least degree d for which ${\mathcal{M}}$ is d-computably categorical, we investigate which Turing degrees can be realized as degrees of categoricity. We show that for all n, degrees d.c.e. in and above 0 (n) can be so realized, as can the degree 0 (ω).
Fried and Kollár constructed a fully faithful functor from the category of graphs to the category of fields. We give a new construction of such a functor and use it to resolve a longstanding open problem in computable model theory, by showing that for every nontrivial countable structure${\cal S}$, there exists a countable field${\cal F}$of arbitrary characteristic with the same essential computable-model-theoretic properties as${\cal S}$. Along the way, we develop a new “computable category theory”, and prove that our functor and (...) its partially defined inverse are computable functors. (shrink)
We exploit properties of certain directed graphs, obtained from the families of sets with special effective enumeration properties, to generalize several results in computable model theory to higher levels of the hyperarithmetical hierarchy. Families of sets with such enumeration features were previously built by Selivanov, Goncharov, and Wehner. For a computable successor ordinal α, we transform a countable directed graph into a structure such that has a isomorphic copy if and only if has a computable isomorphic copy.A computable structure is (...) categorical if for all computable isomorphic copies of , there is an isomorphism from onto , which is . We prove that for every computable successor ordinal α, there is a computable, categorical structure, which is not relatively categorical. This generalizes the result of Goncharov that there is a computable, computably categorical structure, which is not relatively computably categorical.An additional relation R on the domain of a computable structure is intrinsically on if in all computable isomorphic copies of , the image of R is . We prove that for every computable successor ordinal α, there is an intrinsically relation on a computable structure, which not relatively intrinsically . This generalizes the result of Manasse that there is an intrinsically computably enumerable relation on a computable structure, which is not relatively intrinsically computably enumerable.The dimension of a structure is the number of computable isomorphic copies, up to isomorphisms. We prove that for every computable successor ordinal α and every n≥1, there is a computable structure with dimension n. This generalizes the result of Goncharov that there is a structure of computable dimension n for every n≥1.Finally, we prove that for every computable successor ordinal α, there is a countable structure with isomorphic copies in just the Turing degrees of sets X such that relative to X is not . In particular, for every finite n, there is a structure with isomorphic copies in exactly the non- Turing degrees. This generalizes the result obtained by Wehner, and independently by Slaman, that there is a structure with isomorphic copies in exactly the nonzero Turing degrees. (shrink)
Infinite time register machines (ITRMs) are register machines which act on natural numbers and which are allowed to run for arbitrarily many ordinal steps. Successor steps are determined by standard register machine commands. At limit times register contents are defined by appropriate limit operations. In this paper, we examine the ITRMs introduced by the third and fourth author (Koepke and Miller in Logic and Theory of Algorithms LNCS, pp. 306–315, 2008), where a register content at a limit time is set (...) to the lim inf of previous register contents if that limit is finite; otherwise the register is reset to 0. The theory of these machines has several similarities to the infinite time Turing machines (ITTMs) of Hamkins and Lewis. The machines can decide all ${\Pi^1_1}$ sets, yet are strictly weaker than ITTMs. As in the ITTM situation, we introduce a notion of ITRM-clockable ordinals corresponding to the running times of computations. These form a transitive initial segment of the ordinals. Furthermore we prove a Lost Melody theorem: there is a real r such that there is a program P that halts on the empty input for all oracle contents and outputs 1 iff the oracle number is r, but no program can decide for every natural number n whether or not ${n \in r}$ with the empty oracle. In an earlier paper, the third author considered another type of machines where registers were not reset at infinite lim inf’s and he called them infinite time register machines. Because the resetting machines correspond much better to ITTMs we hold that in future the resetting register machines should be called ITRMs. (shrink)
We use the Low Basis Theorem of Jockusch and Soare to show that all computable algebraic fields are d-computably categorical for a particular Turing degree d with d' = θ", but that not all such fields are 0'-computably categorical. We also prove related results about algebraic fields with splitting algorithms, and fields of finite transcendence degree over ℚ.
We characterize the structure of computably categorical trees of finite height, and prove that our criterion is both necessary and sufficient. Intuitively, the characterization is easiest to express in terms of isomorphisms of (possibly infinite) trees, but in fact it is equivalent to a Σ03-condition. We show that all trees which are not computably categorical have computable dimension ω. Finally, we prove that for every n≥ 1 in ω, there exists a computable tree of finite height which is δ0n+1-categorical but (...) not δ0n-categorical. (shrink)
Slaman and Wehner have constructed structures which distinguish the computable Turing degree 0 from the noncomputable degrees, in the sense that the spectrum of each structure consists precisely of the noncomputable degrees. Downey has asked if this can be done for an ordinary type of structure such as a linear order. We show that there exists a linear order whose spectrum includes every noncomputable Δ 0 2 degree, but not 0. Since our argument requires the technique of permitting below a (...) Δ 0 2 set, we include a detailed explanation of the mechanics and intuition behind this type of permitting. (shrink)
We prove that no computable tree of infinite height is computably categorical, and indeed that all such trees have computable dimension ω. Moreover, this dimension is effectively ω, in the sense that given any effective listing of computable presentations of the same tree, we can effectively find another computable presentation of it which is not computably isomorphic to any of the presentations on the list.
We give a straightforward computable-model-theoretic definition of a property of \Delta^0_2 sets called order-computability. We then prove various results about these sets which suggest that, simple though the definition is, the property defies any easy characterization in pure computability theory. The most striking example is the construction of two computably isomorphic c.e. sets, one of which is order-computable and the other not.
We study the relative complexity of equivalence relations and preorders from computability theory and complexity theory. Given binary relationsR,S, a componentwise reducibility is defined byR≤S⇔ ∃f∀x, y[x R y↔fS f].Here,fis taken from a suitable class of effective functions. For us the relations will be on natural numbers, andfmust be computable. We show that there is a${\rm{\Pi }}_1^0$-complete equivalence relation, but no${\rm{\Pi }}_k^0$-complete fork≥ 2. We show that${\rm{\Sigma }}_k^0$preorders arising naturally in the above-mentioned areas are${\rm{\Sigma }}_k^0$-complete. This includes polynomial timem-reducibility on (...) exponential time sets, which is${\rm{\Sigma }}_2^0$, almost inclusion on r.e. sets, which is${\rm{\Sigma }}_3^0$, and Turing reducibility on r.e. sets, which is${\rm{\Sigma }}_4^0$. (shrink)
Fraïssé studied countable structures S through analysis of the age of S i.e., the set of all finitely generated substructures of S. We investigate the effectiveness of his analysis, considering effectively presented lists of finitely generated structures and asking when such a list is the age of a computable structure. We focus particularly on the Fraïssé limit. We also show that degree spectra of relations on a sufficiently nice Fraïssé limit are always upward closed unless the relation is definable by (...) a quantifier-free formula. We give some sufficient or necessary conditions for a Fraïssé limit to be spectrally universal. As an application, we prove that the computable atomless Boolean algebra is spectrally universal. (shrink)
We provide a positive solution for Post’s Problem for ordinal register machines, and also prove that these machines and ordinal Turing machines compute precisely the same partial functions on ordinals. To do so, we construct ordinal register machine programs which compute the necessary functions. In addition, we show that any set of ordinals solving Post’s Problem must be unbounded in the writable ordinals.
It is known that the spectrum of a Boolean algebra cannot contain a low₄ degree unless it also contains the degree 0; it remains open whether the same holds for low₅ degrees. We address the question differently, by considering Boolean subalgebras of the computable atomless Boolean algebra B. For such subalgebras A, we show that it is possible for the spectrum of the unary relation A on B to contain a low₅ degree without containing 0.
For a ring R, Hilbert’s Tenth Problem $HTP$ is the set of polynomial equations over R, in several variables, with solutions in R. We view $HTP$ as an enumeration operator, mapping each set W of prime numbers to $HTP$, which is naturally viewed as a set of polynomials in $\mathbb {Z}[X_1,X_2,\ldots ]$. It is known that for almost all W, the jump $W'$ does not $1$ -reduce to $HTP$. In contrast, we show that every Turing degree contains a set W (...) for which such a $1$ -reduction does hold: these W are said to be HTP-complete. Continuing, we derive additional results regarding the impossibility that a decision procedure for $W'$ from $HTP$ can succeed uniformly on a set of measure $1$, and regarding the consequences for the boundary sets of the $HTP$ operator in case $\mathbb {Z}$ has an existential definition in $\mathbb {Q}$. (shrink)
We define a property R(A 0 , A 1 ) in the partial order E of computably enumerable sets under inclusion, and prove that R implies that A 0 is noncomputable and incomplete. Moreover, the property is nonvacuous, and the A 0 and A 1 which we build satisfying R form a Friedberg splitting of their union A, with A 1 prompt and A promptly simple. We conclude that A 0 and A 1 lie in distinct orbits under automorphisms of (...) E, yielding a strong answer to a question previously explored by Downey, Stob, and Soare about whether halves of Friedberg splittings must lie in the same orbit. (shrink)
We investigate the orbit of a low computably enumerable set under automorphisms of the partial order of c.e. sets under inclusion. Given an arbitrary low c.e. set A and an arbitrary noncomputable c.e. set C, we use the New Extension Theorem of Soare to construct an automorphism of mapping A to a set B such that CTB. Thus, the orbit in of the low set A cannot be contained in the upper cone above C. This complements a result of Harrington, (...) who showed that the orbit of a noncomputable c.e. set cannot be contained in the lower cone below any incomplete c.e. set. (shrink)
The principles for universal reading models proposed by Frost correspond to developmental theories, in which neurocognitive constraints and cultural experiences shape development. We question his contention that Hebrew word identification is fundamentally about roots, excluding verbal and nominal word-pattern morphemes; and we propose that readers use all information available in stimuli, adjusting for volume and usefulness.
Several researchers have recently established that for every Turing degree \, the real closed field of all \-computable real numbers has spectrum \. We investigate the spectra of real closed fields further, focusing first on subfields of the field \ of computable real numbers, then on archimedean real closed fields more generally, and finally on non-archimedean real closed fields. For each noncomputable, computably enumerable set C, we produce a real closed C-computable subfield of \ with no computable copy. Then we (...) build an archimedean real closed field with no computable copy but with a computable enumeration of the Dedekind cuts it realizes, and a computably presentable nonarchimedean real closed field whose residue field has no computable presentation. (shrink)
Let K be a family of structures, closed under isomorphism, in a fixed computable language. We consider effective lists of structures from K such that every structure in K is isomorphic to exactly one structure on the list. Such a list is called a computable classification of K, up to isomorphism. Using the technique of Friedberg enumeration, we show that there is a computable classification of the family of computable algebraic fields and that with a 0'-oracle, we can obtain similar (...) classifications of the families of computable equivalence structures and of computable finite-branching trees. However, there is no computable classification of the latter, nor of the family of computable torsion-free abelian groups of rank 1, even though these families are both closely allied with computable algebraic fields. (shrink)
We study the implications of model completeness of a theory for the effectiveness of presentations of models of that theory. It is immediate that for a computable model A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {A}$$\end{document} of a computably enumerable, model complete theory, the entire elementary diagram E\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E$$\end{document} must be decidable. We prove that indeed a c.e. theory T is model complete if and only if there is a (...) uniform procedure that succeeds in deciding E\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E$$\end{document} from the atomic diagram Δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varDelta $$\end{document} for all countable models A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {A}$$\end{document} of T. Moreover, if every presentation of a single isomorphism type A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {A}$$\end{document} has this property of relative decidability, then there must be a procedure with succeeds uniformly for all presentations of an expansion \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$$$\end{document} by finitely many new constants. (shrink)
Slaman and Wehner have constructed structures which distinguish the computable Turing degree 0 from the noncomputable degrees, in the sense that the spectrum of each structure consists precisely of the noncomputable degrees. Downey has asked if this can be done for an ordinary type of structure such as a linear order. We show that there exists a linear order whose spectrum includes every noncomputable $\Delta^0_2$ degree, but not 0. Since our argument requires the technique of permitting below a $\Delta^0_2$ set, (...) we include a detailed explanation of the mechanics and intuition behind this type of permitting. (shrink)