6 found
Order:
Disambiguations
Roman J. Krawetz [4]Roman Krawetz [2]
  1.  25
    Proteoglycan 4: From Mere Lubricant to Regulator of Tissue Homeostasis and Inflammation.Nabangshu Das, Tannin A. Schmidt, Roman J. Krawetz & Antoine Dufour - 2019 - Bioessays 41 (1):1800166.
    Proteoglycan 4 (PRG4), first identified in synovial fluid, is an extracellular matrix structural protein in the joint implicated in reducing shear at the cartilage surface as well as controlling adhesion‐dependent synovial growth and regulating bulk protein deposition onto the cartilage. However, recent evidence suggests that it can bind to and effect downstream signaling of a number of cell surface receptors implicated in regulating the inflammatory response. Therefore, we pose the hypothesis: Does PRG4 regulate the inflammatory response and maintain tissue homeostasis? (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  2.  6
    Suicide gene‐enabled cell therapy: A novel approach to scalable human pluripotent stem cell quality control.Emilie Gysel, Leila Larijani, Michael S. Kallos & Roman J. Krawetz - 2023 - Bioessays 45 (11):2300037.
    There are an increasing number of cell therapy approaches being studied and employed world‐wide. An emerging area in this field is the use of human pluripotent stem cell (hPSC) products for the treatment of injuries/diseases that cannot be effectively managed through current approaches. However, as with any cell therapy, vast numbers of functional and safe cells are required. Bioreactors provide an attractive avenue to generate clinically relevant cell numbers with decreased labour and decreased batch to batch variation. Yet, current methods (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  3.  20
    Human embryonic stem cells: caught between a ROCK inhibitor and a hard place.Roman J. Krawetz, Xiangyun Li & Derrick E. Rancourt - 2009 - Bioessays 31 (3):336-343.
    Since their derivation, human embryonic stem (hES) cells have been used for a variety of applications including developmental biology, pathology, chemical biology, genomics, and proteomics. However, their most important potential application is the generation of cells and tissues, which can be used for cell‐based therapies. One of the main drawbacks of hES cell culture is that they are particularly sensitive to dissociation, which is required for passaging, expansion, cryopreservation, and other applications. Recently, it has been discovered that an inhibitor of (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  4.  5
    Epidural fat mesenchymal stem cells: Important microenvironmental regulators in health, disease, and regeneration.Sophia Shah, Sathvika Mudigonda, Alim P. Mitha, Paul Salo & Roman J. Krawetz - 2021 - Bioessays 43 (2):2000215.
    Mesenchymal stem cells (MSCs) are present in fat tissues throughout the body, yet little is known regarding their biological role within epidural fat. We hypothesize that debridement of epidural fat and/or subsequent loss of MSCs within this tissue, disrupts homeostasis in the vertebral environment resulting in increased inflammation, fibrosis, and decreased neovascularization leading to poorer functional outcomes post‐injury/operatively. Clinically, epidural fat is commonly considered a space‐filling tissue with limited functionality and therefore typically discarded during surgery. However, the presence of MSCs (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  5.  32
    Returning to the stem state: Epigenetics of recapitulating pre‐differentiation chromatin structure.Mehdi Shafa, Roman Krawetz & Derrick E. Rancourt - 2010 - Bioessays 32 (9):791-799.
    Embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) can self‐renew indefinitely and contribute to all tissue types of the adult organism. Stem cell‐based therapeutic approaches hold enormous promise for the cure of regenerative diseases. Over the last few years, several studies have attempted to decipher the important role of transcription factor networks and epigenetic regulatory signals in the maintenance of ESC pluripotency, but the exact underlying mechanisms have yet to be identified. Among the epigenetic factors, chromatin dynamics and (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  6.  34
    Would the real human embryonic stem cell please stand up?Ben Zhang, Roman Krawetz & Derrick E. Rancourt - 2013 - Bioessays 35 (7):632-638.
    Embryonic stem cells (ESCs) are now classified into two types of pluripotency: “naïve” and “primed” based upon their differing characteristics. Conventional human ESCs have much more in common with mouse epiblast stem cells and are now deemed to be primed. Naïve human ESCs that resemble mouse ESCs have recently been generated from their primed counterpart by cellular reprogramming. Isolation of naïve hESCs from human embryos has proven to be difficult. Is the inability to capture naïve hESCs the result of suboptimal (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark