9 found
Order:
Disambiguations
Richard H. Scheuermann [8]Richard Scheuermann [1]
  1. The OBO Foundry: Coordinated evolution of ontologies to support biomedical data integration.Barry Smith, Michael Ashburner, Cornelius Rosse, Jonathan Bard, William Bug, Werner Ceusters, Louis J. Goldberg, Karen Eilbeck, Amelia Ireland, Christopher J. Mungall, Neocles Leontis, Philippe Rocca-Serra, Alan Ruttenberg, Susanna-Assunta Sansone, Richard H. Scheuermann, Nigam Shah, Patricia L. Whetzel & Suzanna Lewis - 2007 - Nature Biotechnology 25 (11):1251-1255.
    The value of any kind of data is greatly enhanced when it exists in a form that allows it to be integrated with other data. One approach to integration is through the annotation of multiple bodies of data using common controlled vocabularies or ‘ontologies’. Unfortunately, the very success of this approach has led to a proliferation of ontologies which itself creates obstacles to integration. The Open Biomedical Ontologies (OBO) consortium has set in train a strategy to overcome this problem. Existing (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   136 citations  
  2. The Ontology for Biomedical Investigations.Anita Bandrowski, Ryan Brinkman, Mathias Brochhausen, Matthew H. Brush, Bill Bug, Marcus C. Chibucos, Kevin Clancy, Mélanie Courtot, Dirk Derom, Michel Dumontier, Liju Fan, Jennifer Fostel, Gilberto Fragoso, Frank Gibson, Alejandra Gonzalez-Beltran, Melissa A. Haendel, Yongqun He, Mervi Heiskanen, Tina Hernandez-Boussard, Mark Jensen, Yu Lin, Allyson L. Lister, Phillip Lord, James Malone, Elisabetta Manduchi, Monnie McGee, Norman Morrison, James A. Overton, Helen Parkinson, Bjoern Peters, Philippe Rocca-Serra, Alan Ruttenberg, Susanna-Assunta Sansone, Richard H. Scheuermann, Daniel Schober, Barry Smith, Larisa N. Soldatova, Christian J. Stoeckert, Chris F. Taylor, Carlo Torniai, Jessica A. Turner, Randi Vita, Patricia L. Whetzel & Jie Zheng - 2016 - PLoS ONE 11 (4):e0154556.
    The Ontology for Biomedical Investigations (OBI) is an ontology that provides terms with precisely defined meanings to describe all aspects of how investigations in the biological and medical domains are conducted. OBI re-uses ontologies that provide a representation of biomedical knowledge from the Open Biological and Biomedical Ontologies (OBO) project and adds the ability to describe how this knowledge was derived. We here describe the state of OBI and several applications that are using it, such as adding semantic expressivity to (...)
    Direct download (11 more)  
     
    Export citation  
     
    Bookmark   28 citations  
  3. Toward an Ontological Treatment of Disease and Diagnosis.Richard H. Scheuermann, Werner Ceusters & Barry Smith - 2009 - In Proceedings of the 2009 AMIA Summit on Translational Bioinformatics. American Medical Informatics Association.
    Many existing biomedical vocabulary standards rest on incomplete, inconsistent or confused accounts of basic terms pertaining to diseases, diagnoses, and clinical phenotypes. Here we outline what we believe to be a logically and biologically coherent framework for the representation of such entities and of the relations between them. We defend a view of disease as involving in every case some physical basis within the organism that bears a disposition toward the execution of pathological processes. We present our view in the (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   33 citations  
  4.  84
    Coordinating virus research: The Virus Infectious Disease Ontology.John Beverley, Shane Babcock, Gustavo Carvalho, Lindsay G. Cowell, Sebastian Duesing, Yongqun He, Regina Hurley, Eric Merrell, Richard H. Scheuermann & Barry Smith - 2024 - PLoS ONE 1.
    The COVID-19 pandemic prompted immense work on the investigation of the SARS-CoV-2 virus. Rapid, accurate, and consistent interpretation of generated data is thereby of fundamental concern. Ontologies––structured, controlled, vocabularies––are designed to support consistency of interpretation, and thereby to prevent the development of data silos. This paper describes how ontologies are serving this purpose in the COVID-19 research domain, by following principles of the Open Biological and Biomedical Ontology (OBO) Foundry and by reusing existing ontologies such as the Infectious Disease Ontology (...)
    Direct download  
     
    Export citation  
     
    Bookmark  
  5. Promoting coherent minimum reporting guidelines for biological and biomedical investigations: the MIBBI project.Chris F. Taylor, Dawn Field, Susanna-Assunta Sansone, Jan Aerts, Rolf Apweiler, Michael Ashburner, Catherine A. Ball, Pierre-Alain Binz, Molly Bogue, Tim Booth, Alvis Brazma, Ryan R. Brinkman, Adam Michael Clark, Eric W. Deutsch, Oliver Fiehn, Jennifer Fostel, Peter Ghazal, Frank Gibson, Tanya Gray, Graeme Grimes, John M. Hancock, Nigel W. Hardy, Henning Hermjakob, Randall K. Julian, Matthew Kane, Carsten Kettner, Christopher Kinsinger, Eugene Kolker, Martin Kuiper, Nicolas Le Novere, Jim Leebens-Mack, Suzanna E. Lewis, Phillip Lord, Ann-Marie Mallon, Nishanth Marthandan, Hiroshi Masuya, Ruth McNally, Alexander Mehrle, Norman Morrison, Sandra Orchard, John Quackenbush, James M. Reecy, Donald G. Robertson, Philippe Rocca-Serra, Henry Rodriguez, Heiko Rosenfelder, Javier Santoyo-Lopez, Richard H. Scheuermann, Daniel Schober, Barry Smith & Jason Snape - 2008 - Nature Biotechnology 26 (8):889-896.
    Throughout the biological and biomedical sciences there is a growing need for, prescriptive ‘minimum information’ (MI) checklists specifying the key information to include when reporting experimental results are beginning to find favor with experimentalists, analysts, publishers and funders alike. Such checklists aim to ensure that methods, data, analyses and results are described to a level sufficient to support the unambiguous interpretation, sophisticated search, reanalysis and experimental corroboration and reuse of data sets, facilitating the extraction of maximum value from data sets (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   6 citations  
  6. An improved ontological representation of dendritic cells as a paradigm for all cell types.Anna Maria Masci, Cecilia N. Arighi, Alexander D. Diehl, Anne E. Liebermann, Chris Mungall, Richard H. Scheuermann, Barry Smith & Lindsay Cowell - 2009 - BMC Bioinformatics 10 (1):70.
  7. VO: Vaccine Ontology.Yongqun He, Lindsay Cowell, Alexander D. Diehl, H. L. Mobley, Bjoern Peters, Alan Ruttenberg, Richard H. Scheuermann, Ryan R. Brinkman, Melanie Courtot, Chris Mungall, Barry Smith & Others - 2009 - In ICBO 2009: Proceedings of the First International Conference on Biomedical Ontology. Buffalo:
    Vaccine research, as well as the development, testing, clinical trials, and commercial uses of vaccines involve complex processes with various biological data that include gene and protein expression, analysis of molecular and cellular interactions, study of tissue and whole body responses, and extensive epidemiological modeling. Although many data resources are available to meet different aspects of vaccine needs, it remains a challenge how we are to standardize vaccine annotation, integrate data about varied vaccine types and resources, and support advanced vaccine (...)
    Direct download  
     
    Export citation  
     
    Bookmark   2 citations  
  8. Guest Editorial: Ontologies for clinical and translational research.Barry Smith & Richard H. Scheuermann - 2011 - Journal of Biomedical Informatics 44 (1):3--7.
    No categories
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  9.  47
    Overcoming the ontology enrichment bottleneck with quick term templates.Philippe Rocca-Serra, Alan Ruttenberg, Martin J. O'Connor, Patricia L. Whetzel, Daniel Schober, Jay Greenbaum, Mélanie Courtot, Ryan R. Brinkman, Susanna Assunta Sansone & Richard Scheuermann - 2011 - Applied ontology 6 (1):13-22.
    No categories
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark