This volume has 41 chapters written to honor the 100th birthday of Mario Bunge. It celebrates the work of this influential Argentine/Canadian physicist and philosopher. Contributions show the value of Bunge’s science-informed philosophy and his systematic approach to philosophical problems. The chapters explore the exceptionally wide spectrum of Bunge’s contributions to: metaphysics, methodology and philosophy of science, philosophy of mathematics, philosophy of physics, philosophy of psychology, philosophy of social science, philosophy of biology, philosophy of technology, moral philosophy, social and political (...) philosophy, medical philosophy, and education. The contributors include scholars from 16 countries. Bunge combines ontological realism with epistemological fallibilism. He believes that science provides the best and most warranted knowledge of the natural and social world, and that such knowledge is the only sound basis for moral decision making and social and political reform. Bunge argues for the unity of knowledge. In his eyes, science and philosophy constitute a fruitful and necessary partnership. Readers will discover the wisdom of this approach and will gain insight into the utility of cross-disciplinary scholarship. This anthology will appeal to researchers, students, and teachers in philosophy of science, social science, and liberal education programmes. 1. Introduction Section I. An Academic Vocation Section II. Philosophy Section III. Physics and Philosophy of Physics Section IV. Cognitive Science and Philosophy of Mind Section V. Sociology and Social Theory Section VI. Ethics and Political Philosophy Section VII. Biology and Philosophy of Biology Section VIII. Mathematics Section IX. Education Section X. Varia Section XI. Bibliography. (shrink)
In his introductory paper to first-order logic, Jon Barwise writes in the Handbook of Mathematical Logic :[T]he informal notion of provable used in mathematics is made precise by the formal notion provable in first-order logic. Following a sug[g]estion of Martin Davis, we refer to this view as Hilbert’s Thesis.This paper reviews the discussion of Hilbert’s Thesis in the literature. In addition to the question whether it is justifiable to use Hilbert’s name here, the arguments for this thesis are compared with (...) those for Church’s Thesis concerning computability. This leads to the question whether one could provide an analogue for proofs of the concept of partial recursive function. (shrink)
This article provides the proof-theoretic analysis of the transfinitely iterated fixed point theories $\widehat{ID}_\alpha and \widehat{ID}_{ the exact proof-theoretic ordinals of these systems are presented.
We give a survey on truth theories for applicative theories. It comprises Frege structures, universes for Frege structures, and a theory of supervaluation. We present the proof-theoretic results for these theories and show their syntactical expressive power. In particular, we present as a novelty a syntactical interpretation of ID1 in a applicative truth theory based on supervaluation.
This article provides the proof-theoretic analysis of the transfinitely iterated fixed point theories $\widehat{ID}_\alpha and \widehat{ID}_{<\alpha};$ the exact proof-theoretic ordinals of these systems are presented.
This paper deals with universes in explicit mathematics. After introducing some basic definitions, the limit axiom and possible ordering principles for universes are discussed. Later, we turn to least universes, strictness and name induction. Special emphasis is put on theories for explicit mathematics with universes which are proof-theoretically equivalent to Feferman's.
In 2000, a draft note of David Hilbert was found in his Nachlass concerning a 24th problem he had consider to include in the his famous problem list of the talk at the International Congress of Mathematicians in 1900 in Paris. This problem concerns simplicity of proofs. In this paper we review the traces of this problem which one can find in the work of Hilbert and his school, as well as modern research started on it after its publication. We (...) stress, in particular, the mathematical nature of the problem.1. (shrink)
In this paper, we study a concept of universe for a truth predicate over applicative theories. A proof-theoretic analysis is given by use of transfinitely iterated fixed point theories . The lower bound is obtained by a syntactical interpretation of these theories. Thus, universes over Frege structures represent a syntactically expressive framework of metapredicative theories in the context of applicative theories.
In this programmatic paper we renew the well-known question “What is a proof?”. Starting from the challenge of the mathematical community by computer assisted theorem provers we discuss in the first part how the experiences from examinations of proofs can help to sharpen the question. In the second part we have a look to the new challenge given by “big proofs”.
In this paper we summarize some results about sets in Frege structures. The resulting set theory is discussed with respect to its historical and philosophical significance. This includes the treatment of diagonalization in the presence of a universal set.
We study the logical relationship of various forms of induction, as well as quantification operators in applicative theories. In both cases the introduced notion of $\hbox{\sf N}$ -strictness allows us to obtain the appropriate results.
We give a reading of binary necessity statements of the form “ϕ is necessary for ψ” in terms of proofs. This reading is based on the idea of interpreting such statements as “Every proof of ψ uses ϕ”.
We discuss Lorenzen’s consistency proof for ramified type theory without reducibility, published in 1951, in its historical context and highlight Lorenzen’s contribution to the development of modern proof theory, notably by the introduction of the ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\omega $$\end{document}-rule.
In this paper we introduce applicative theories which characterize the polynomial hierarchy of time and its levels. These theories are based on a characterization of the functions in the polynomial hierarchy using monotonicity constraints, introduced by Ben-Amram, Loff, and Oitavem.
We give recursion-theoretic characterizations of the counting class \, the class of those functions which count the number of accepting computations of non-deterministic Turing machines working in polynomial time. Moreover, we characterize in a recursion-theoretic manner all the levels \ of the counting hierarchy of functions \, which result from allowing queries to functions of the previous level, and \ itself as a whole. This is done in the style of Bellantoni and Cook’s safe recursion, and it places \ in (...) the context of implicit computational complexity. Namely, it relates \ with the implicit characterizations of \ and \ :317–323, 2008), by exploiting the features of the tree-recursion scheme of \. (shrink)
In 2000, Rüdiger Thiele [1] found in a notebook of David Hilbert, kept in Hilbert's Nachlass at the University of Göttingen, a small note concerning a 24th problem. As Hilbert wrote, he had considered including this problem in his famous problem list for the International Congress of Mathematicians in Paris in 1900.
In 2000, Rüdiger Thiele [1] found in a notebook of David Hilbert, kept in Hilbert's Nachlass at the University of Göttingen, a small note concerning a 24th problem. As Hilbert wrote, he had considered including this problem in his famous problem list for the International Congress of Mathematicians in Paris in 1900.
Gerhard Gentzen has been described as logic’s lost genius, whom Gödel called a better logician than himself. This work comprises articles by leading proof theorists, attesting to Gentzen’s enduring legacy to mathematical logic and beyond. The contributions range from philosophical reflections and re-evaluations of Gentzen’s original consistency proofs to the most recent developments in proof theory. Gentzen founded modern proof theory. His sequent calculus and natural deduction system beautifully explain the deep symmetries of logic. They underlie modern developments in computer (...) science such as automated theorem proving and type theory. (shrink)
Es ist bekannt, dass Kurt Gödel im „mathematischen Realismus“ seine philosophische Grundposition wiedergegeben sah. Zielsetzung dieses Essays ist es zu zeigen, dass sich auch umgekehrt ein mathematischer Realismus praktisch zwangsläufig als eine Konsequenz aus dem Unvollständigkeitssatz ergibt. Im Weiteren zeigt sich damit eine unüberwindliche Hürde für eine reduktionistische Mathematik.
Diagonalization is a transversal theme in Logic. In this work, it is shown that there exists a common origin of several diagonalization phenomena — paradoxes and Löb's Theorem. That common origin comprises a common reasoning and a common logical structure. We analyse the common structure from a philosophical point-of-view and we draw some conclusions.
We give an overview of recent results in ordinal analysis. Therefore, we discuss the different frameworks used in mathematical proof-theory, namely "subsystem of analysis" including "reverse mathematics", "Kripke-Platek set theory", "explicit mathematics", "theories of inductive definitions", "constructive set theory", and "Martin-Löf's type theory".
Kreisel’s conjecture is the statement: if, for all $n\in \mathbb {N}$, $\mathop {\text {PA}} \nolimits \vdash _{k \text { steps}} \varphi $, then $\mathop {\text {PA}} \nolimits \vdash \forall x.\varphi $. For a theory of arithmetic T, given a recursive function h, $T \vdash _{\leq h} \varphi $ holds if there is a proof of $\varphi $ in T whose code is at most $h$. This notion depends on the underlying coding. ${P}^h_T$ is a predicate for $\vdash _{\leq h}$ in (...) T. It is shown that there exist a sentence $\varphi $ and a total recursive function h such that $T\vdash _{\leq h}\mathop {\text {Pr}} \nolimits _T\rightarrow \varphi \urcorner )$, but, where $\mathop {\text {Pr}} \nolimits _T$ stands for the standard provability predicate in T. This statement is related to a conjecture by Montagna. Also variants and weakenings of Kreisel’s conjecture are studied. By the use of reflexion principles, one can obtain a theory $T^h_\Gamma $ that extends T such that a version of Kreisel’s conjecture holds: given a recursive function h and $\varphi $ a $\Gamma $ -formula such that, for all $n\in \mathbb {N}$, $T\vdash _{\leq h} \varphi $, then $T^h_\Gamma \vdash \forall x.\varphi $. Derivability conditions are studied for a theory to satisfy the following implication: if, then $T\vdash \forall x.\varphi $. This corresponds to an arithmetization of Kreisel’s conjecture. It is shown that, for certain theories, there exists a function h such that $\vdash _{k \text { steps}}\ \subseteq\ \vdash _{\leq h}$. (shrink)
We study the decidability of k-provability in \—the relation ‘being provable in \ with at most k steps’—and the decidability of the proof-skeleton problem—the problem of deciding if a given formula has a proof that has a given skeleton. The decidability of k-provability for the usual Hilbert-style formalisation of \ is still an open problem, but it is known that the proof-skeleton problem is undecidable for that theory. Using new methods, we present a characterisation of some numbers k for which (...) k-provability is decidable, and we present a characterisation of some proof-skeletons for which one can decide whether a formula has a proof whose skeleton is the considered one. These characterisations are natural and parameterised by unification algorithms. (shrink)
In this paper, we discuss the question how Peano’s Arithmetic reached the place it occupies today in Mathematics. We compare Peano’s approach with Dedekind’s account of the subject. Then we highlight the role of Hilbert and Bernays in subsequent developments.
Dual Axiomatics.Reinhard Kahle - 2019 - In Mario Augusto Bunge, Michael R. Matthews, Guillermo M. Denegri, Eduardo L. Ortiz, Heinz W. Droste, Alberto Cordero, Pierre Deleporte, María Manzano, Manuel Crescencio Moreno, Dominique Raynaud, Íñigo Ongay de Felipe, Nicholas Rescher, Richard T. W. Arthur, Rögnvaldur D. Ingthorsson, Evandro Agazzi, Ingvar Johansson, Joseph Agassi, Nimrod Bar-Am, Alberto Cupani, Gustavo E. Romero, Andrés Rivadulla, Art Hobson, Olival Freire Junior, Peter Slezak, Ignacio Morgado-Bernal, Marta Crivos, Leonardo Ivarola, Andreas Pickel, Russell Blackford, Michael Kary, A. Z. Obiedat, Carolina I. García Curilaf, Rafael González del Solar, Luis Marone, Javier Lopez de Casenave, Francisco Yannarella, Mauro A. E. Chaparro, José Geiser Villavicencio- Pulido, Martín Orensanz, Jean-Pierre Marquis, Reinhard Kahle, Ibrahim A. Halloun, José María Gil, Omar Ahmad, Byron Kaldis, Marc Silberstein, Carolina I. García Curilaf, Rafael González del Solar, Javier Lopez de Casenave, Íñigo Ongay de Felipe & Villavicencio-Pulid (eds.), Mario Bunge: A Centenary Festschrift. Springer Verlag. pp. 633-642.details
Mario Bunge forcefully argues for Dual Axiomatics, i.e., an axiomatic method applied to natural sciences which explicitly takes into account semantic aspects of the concepts involved in an axiomatization. In this paper we will discuss how dual axiomatics is equally important in mathematics; both historically in Hilbert and Bernays’s conception as well as today in a set-theoretical environment.
This paper provides a discussion to which extent the Mathematician David Hilbert could or should be considered as a Philosopher, too. In the first part, we discuss some aspects of the relation of Mathematicians and Philosophers. In the second part we give an analysis of David Hilbert as Philosopher.