In recent years, there has been a substantial amount of work in reverse mathematics concerning natural mathematical principles that are provable from RT, Ramsey's Theorem for Pairs. These principles tend to fall outside of the "big five" systems of reverse mathematics and a complicated picture of subsystems below RT has emerged. In this paper, we answer two open questions concerning these subsystems, specifically that ADS is not equivalent to CAC and that EM is not equivalent to RT.
We exploit properties of certain directed graphs, obtained from the families of sets with special effective enumeration properties, to generalize several results in computable model theory to higher levels of the hyperarithmetical hierarchy. Families of sets with such enumeration features were previously built by Selivanov, Goncharov, and Wehner. For a computable successor ordinal α, we transform a countable directed graph into a structure such that has a isomorphic copy if and only if has a computable isomorphic copy.A computable structure is (...) categorical if for all computable isomorphic copies of , there is an isomorphism from onto , which is . We prove that for every computable successor ordinal α, there is a computable, categorical structure, which is not relatively categorical. This generalizes the result of Goncharov that there is a computable, computably categorical structure, which is not relatively computably categorical.An additional relation R on the domain of a computable structure is intrinsically on if in all computable isomorphic copies of , the image of R is . We prove that for every computable successor ordinal α, there is an intrinsically relation on a computable structure, which not relatively intrinsically . This generalizes the result of Manasse that there is an intrinsically computably enumerable relation on a computable structure, which is not relatively intrinsically computably enumerable.The dimension of a structure is the number of computable isomorphic copies, up to isomorphisms. We prove that for every computable successor ordinal α and every n≥1, there is a computable structure with dimension n. This generalizes the result of Goncharov that there is a structure of computable dimension n for every n≥1.Finally, we prove that for every computable successor ordinal α, there is a countable structure with isomorphic copies in just the Turing degrees of sets X such that relative to X is not . In particular, for every finite n, there is a structure with isomorphic copies in exactly the non- Turing degrees. This generalizes the result obtained by Wehner, and independently by Slaman, that there is a structure with isomorphic copies in exactly the nonzero Turing degrees. (shrink)
We construct the set of the title, answering a question of Cholak, Jockusch, and Slaman [1], and discuss its connections with the study of the proof-theoretic strength and effective content of versions of Ramsey's Theorem. In particular, our result implies that every ω-model of RCA 0 + SRT 2 2 must contain a nonlow set.
We study theorems of ordered groups from the perspective of reverse mathematics. We show that suffices to prove Hölder's Theorem and give equivalences of both (the orderability of torsion free nilpotent groups and direct products, the classical semigroup conditions for orderability) and (the existence of induced partial orders in quotient groups, the existence of the center, and the existence of the strong divisible closure).
We show that if H is an effectively completely decomposable computable torsion-free abelian group, then there is a computable copy G of H such that G has computable orders but not orders of every degree.
We characterize the structure of computably categorical trees of finite height, and prove that our criterion is both necessary and sufficient. Intuitively, the characterization is easiest to express in terms of isomorphisms of (possibly infinite) trees, but in fact it is equivalent to a Σ03-condition. We show that all trees which are not computably categorical have computable dimension ω. Finally, we prove that for every n≥ 1 in ω, there exists a computable tree of finite height which is δ0n+1-categorical but (...) not δ0n-categorical. (shrink)
We show, for each computable ordinal α and degree $\alpha > {0^{\left( \alpha \right)}}$, the existence of a torsion-free abelian group with proper α th jump degree α.
Hirschfeldt and Shore have introduced a notion of stability for infinite posets. We define an arguably more natural notion called weak stability, and we study the existence of infinite computable or low chains or antichains, and of infinite $\Pi _1^0 $ chains and antichains, in infinite computable stable and weakly stable posets. For example, we extend a result of Hirschfeldt and Shore to show that every infinite computable weakly stable poset contains either an infinite low chain or an infinite computable (...) antichain. Our hardest result is that there is an infinite computable weakly stable poset with no infinite $\Pi _1^0 $ chains or antichains. On the other hand, it is easily seen that every infinite computable stable poset contains an infinite computable chain or an infinite $\Pi _1^0 $ antichain. In Reverse Mathematics, we show that SCAC, the principle that every infinite stable poset contains an infinite chain or antichain, is equivalent over RCA₀ to WSCAC, the corresponding principle for weakly stable posets. (shrink)
It is known that the spaces of orders on orderable computable fields can represent all Π10 classes up to Turing degree. We show that the spaces of orders on orderable computable abelian and nilpotent groups cannot represent Π10 classes in even a weak manner. Next, we consider presentations of ordered abelian groups, and we show that there is a computable ordered abelian group for which no computable presentation admits a computable set of representatives for its Archimedean classes.
We divide the class of infinite computable trees into three types. For the first and second types, 0' computes a nontrivial self-embedding while for the third type 0'' computes a nontrivial self-embedding. These results are optimal and we obtain partial results concerning the complexity of nontrivial self-embeddings of infinite computable trees considered up to isomorphism. We show that every infinite computable tree must have either an infinite computable chain or an infinite Π01 antichain. This result is optimal and has connections (...) to the program of reverse mathematics. (shrink)
We examine the Dual Ramsey Theorem and two related combinatorial principles VW(k,l) and OVW(k,l) from the perspectives of reverse mathematics and effective mathematics. We give a statement of the Dual Ramsey Theorem for open colorings in second order arithmetic and formalize work of Carlson and Simpson [1] to show that this statement implies ACA 0 over RCA 0 . We show that neither VW(2,2) nor OVW(2,2) is provable in WKL 0 . These results give partial answers to questions posed by (...) Friedman and Simpson [3]. (shrink)
The terms of the upper and lower central series of a nilpotent computable group have computably enumerable Turing degree. We show that the Turing degrees of these terms are independent even when restricted to groups which admit computable orders.
We establish that the isomorphism problem for the classes of computable nilpotent rings, distributive lattices, nilpotent groups, and nilpotent semigroups is \-complete, which is as complicated as possible. The method we use is based on uniform effective interpretations of computable binary relations into computable structures from the corresponding algebraic classes.
In this paper, we investigate the Lindenbaum algebra ℒ of the theory T fin = Th of the class M fin of all finite models of a finite rich signature. We prove that this algebra is an atomic Boolean algebra while its Gödel numeration γ is a [Formula: see text]-numeration. Moreover, the quotient algebra /ℱ, γ/ℱ) modulo the Fréchet ideal ℱ is a [Formula: see text]-algebra, which is universal over the class of all [Formula: see text] Boolean algebras. These conditions (...) characterize uniquely the algebra ℒ; moreover, these conditions characterize up to recursive isomorphism the numerated Boolean quotient algebra /ℱ, γ/ℱ). These results extend the work of Trakhtenbrot [17] and Vaught [18] on the first order theory of the class of all finite models of a finite rich signature. (shrink)
We define the notion of a completely determined Borel code in reverse mathematics, and consider the principle $CD - PB$, which states that every completely determined Borel set has the property of Baire. We show that this principle is strictly weaker than $AT{R_0}$. Any ω-model of $CD - PB$ must be closed under hyperarithmetic reduction, but $CD - PB$ is not a theory of hyperarithmetic analysis. We show that whenever $M \subseteq {2^\omega }$ is the second-order part of an ω-model (...) of $CD - PB$, then for every $Z \in M$, there is a $G \in M$ such that G is ${\rm{\Delta }}_1^1$-generic relative to Z. (shrink)
We analyze three applications of Ramsey’s Theorem for 4-tuples to infinite traceable graphs and finitely generated infinite lattices using the tools of reverse mathematics. The applications in graph theory are shown to be equivalent to Ramsey’s Theorem while the application in lattice theory is shown to be provable in the weaker system RCA0.
We study what the existence of a classical embedding between computable structures implies about the existence of computable embeddings. In particular, we consider the effect of fixing and varying the computable presentations of the computable structures.
We study the implications of model completeness of a theory for the effectiveness of presentations of models of that theory. It is immediate that for a computable model A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {A}$$\end{document} of a computably enumerable, model complete theory, the entire elementary diagram E\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E$$\end{document} must be decidable. We prove that indeed a c.e. theory T is model complete if and only if there is a (...) uniform procedure that succeeds in deciding E\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E$$\end{document} from the atomic diagram Δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varDelta $$\end{document} for all countable models A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {A}$$\end{document} of T. Moreover, if every presentation of a single isomorphism type A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {A}$$\end{document} has this property of relative decidability, then there must be a procedure with succeeds uniformly for all presentations of an expansion \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$$$\end{document} by finitely many new constants. (shrink)