17 found
Order:
  1. Undecidable Theories.Alfred Tarski, Andrzej Mostowski & Raphael M. Robinson - 1953 - Philosophy 30 (114):278-279.
    No categories
     
    Export citation  
     
    Bookmark   115 citations  
  2.  7
    Rekursive Funktionen.Raphael M. Robinson & Rozsa Peter - 1951 - Journal of Symbolic Logic 16 (4):280.
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   21 citations  
  3.  52
    The theory of classes A modification of von Neumann's system.Raphael M. Robinson - 1937 - Journal of Symbolic Logic 2 (1):29-36.
    1. The theory of classes presented in this paper is a simplification of that presented by J. von Neumann in his paper Die Axiomatisierung der Mengenlehre. However, this paper is written so that it can be read independently of von Neumann's. The principal modifications of his system are the following.(1) The idea of ordered pair is defined in terms of the other primitive concepts of the system. (See Axiom 4.3 below.)(2) A much simpler proof of the well-ordering theorem, based on (...)
    Direct download (7 more)  
     
    Export citation  
     
    Bookmark   7 citations  
  4.  26
    The undecidability of pure transcendental extensions of real fields.Raphael M. Robinson - 1964 - Zeitschrift fur mathematische Logik und Grundlagen der Mathematik 10 (18):275-282.
  5.  18
    Arithmetical representation of recursively enumerable sets.Raphael M. Robinson - 1956 - Journal of Symbolic Logic 21 (2):162-186.
  6.  28
    Arithmetical definability of field elements.Raphael M. Robinson - 1951 - Journal of Symbolic Logic 16 (2):125-126.
  7.  39
    Finite sequences of classes.Raphael M. Robinson - 1945 - Journal of Symbolic Logic 10 (4):125-126.
    Consider an axiomatic set theory in which there is a distinction between “sets” and “classes,” only sets being allowable as elements. How can one define a finite sequence of classes? This problem was proposed to me by A. Tarski, and a solution is given in this note. We shall assume the axiom system Σ used by Godei in his study of the continuum hypothesis, and shall use the same notation.1.
    Direct download (8 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  8.  29
    Some representations of diophantine sets.Raphael M. Robinson - 1972 - Journal of Symbolic Logic 37 (3):572-578.
  9.  29
    Péter Rózsa. Rekursive Funktionen. Second, enlarged edition. Verlag der Ungarischen Akademie der Wissenschaften, Budapest 1957, 278 pp. [REVIEW]Raphael M. Robinson - 1958 - Journal of Symbolic Logic 23 (3):362-363.
    Direct download (6 more)  
     
    Export citation  
     
    Bookmark   11 citations  
  10.  32
    Andrzej Mostowski. Concerning the problem of axiomatizability of the field of real numbers in the weak second order logic. Essays on the foundations of mathematics, dedicated to A. A. Fraenkel on his seventieth anniversary, edited by Y. Bar-Hillel, E. I. J. Poznanski, M. O. Rabin, and A. Robinson for The Hebrew University of Jerusalem, Magnes Press, Jerusalem 1961, and North-Holland Publishing Company, Amsterdam1962, pp. 269–286. [REVIEW]Raphael M. Robinson - 1967 - Journal of Symbolic Logic 32 (1):130-131.
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  11.  9
    Grzegorczyk A.. An example of two weak essentially undecidable theories F and F*. Bulletin de l'Académie Polonaise des Sciences, Série des sciences mathématiques, astronomiques et physiques, vol. 10 , pp. 5–9. [REVIEW]Raphael M. Robinson - 1962 - Journal of Symbolic Logic 27 (3):358-358.
  12.  15
    Hermes Hans. Unentscheidbarkeit der Arithmetik. Mathematisch-physikalische Semesterberichte , vol. 11, no. 1 , pp. 20–34. [REVIEW]Raphael M. Robinson - 1968 - Journal of Symbolic Logic 33 (3):469-469.
  13.  17
    Neubauer Miloš. Sur quelques simplifications de la théorie axiomatique d'ensembles de von Neumann . French with brief Czechic résumé. Časopis pro pěstování matematiky a fysiky, vol. 74 , pp. 142–144. [REVIEW]Raphael M. Robinson - 1955 - Journal of Symbolic Logic 20 (1):81-81.
  14.  12
    Péter Rózsa. Probleme der Hilbertschen Theorie der höheren Stufen von rekursiven Funktionen. German with Russian abstract. Acta mathematica Academiae Scientiarum Hungaricae, vol. 2 , pp. 247–274. [REVIEW]Raphael M. Robinson - 1953 - Journal of Symbolic Logic 18 (3):263-264.
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  15.  24
    Péter Rózsa. Rekursive Funktionen. Akadémiai Kiadó , Budapest 1951, 206 pp. [REVIEW]Raphael M. Robinson - 1951 - Journal of Symbolic Logic 16 (4):280-282.
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  16.  7
    Review: A. Grzegorczyk, An Example of Two Weak Essentially Undecidable Theories F and F$^ast$. [REVIEW]Raphael M. Robinson - 1962 - Journal of Symbolic Logic 27 (3):358-358.
  17. Review: Andrzej Mostowski, Y. Bar-Hillel, E. I. J. Poznanski, M. O. Rabin, A. Robinson, Concerning the Problem of Axiomatizability of the Field of Real Numbers in the Weak Second Order Logic. [REVIEW]Raphael M. Robinson - 1967 - Journal of Symbolic Logic 32 (1):130-131.