Ambitiously identifying fresh issues in the study of complex systems, Peter J. Taylor, in a model of interdisciplinary exploration, makes these concerns accessible to scholars in the fields of ecology, environmental science, and science studies. Unruly Complexity explores concepts used to deal with complexity in three realms: ecology and socio-environmental change; the collective constitution of knowledge; and the interpretations of science as they influence subsequent research. For each realm Taylor shows that unruly complexity-situations that lack definite boundaries, where what goes (...) on "outside" continually restructures what is "inside," and where diverse processes come together to produce change-should not be suppressed by partitioning complexity into well-bounded systems that can be studied or managed from an outside vantage point. Using case studies from Australia, North America, and Africa, he encourages readers to be troubled by conventional boundaries-especially between science and the interpretation of science-and to reflect more self-consciously on the conceptual and practical choices researchers make. (shrink)
Quantitative genetics (QG) analyses variation in traits of humans, other animals, or plants in ways that take account of the genealogical relatedness of the individuals whose traits are observed. “Classical” QG, where the analysis of variation does not involve data on measurable genetic or environmental entities or factors, is reformulated in this article using models that are free of hypothetical, idealized versions of such factors, while still allowing for defined degrees of relatedness among kinds of individuals or “varieties.” The gene (...) - free formulation encompasses situations encountered in human QG as well as in agricultural QG. This formulation is used to describe three standard assumptions involved in classical QG and provide plausible alternatives. Several concerns about the partitioning of trait variation into components and its interpretation, most of which have a long history of debate, are discussed in light of the gene-free formulation and alternative assumptions. That discussion is at a theoretical level, not dependent on empirical data in any particular situation. Additional lines of work to put the gene-free formulation and alternative assumptions into practice and to assess their empirical consequences are noted, but lie beyond the scope of this article. The three standard QG assumptions examined are: (1) partitioning of trait variation into components requires models of hypothetical, idealized genes with simple Mendelian inheritance and direct contributions to the trait; (2) all other things being equal, similarity in traits for relatives is proportional to the fraction shared by the relatives of all the genes that vary in the population (e.g., fraternal or dizygotic twins share half of the variable genes that identical or monozygotic twins share); (3) in analyses of human data, genotype-environment interaction variance (in the classical QG sense) can be discounted. The concerns about the partitioning of trait variation discussed include: the distinction between traits and underlying measurable factors; the possible heterogeneity in factors underlying the development of a trait; the kinds of data needed to estimate key empirical parameters; and interpretations based on contributions of hypothetical genes; as well as, in human studies, the labeling of residual variance as a non-shared environmental effect; and the importance of estimating interaction variance. (shrink)
I explore heterogeneous constructionism, my term for the perspective that science in the making is a process of agents building by combining a diversity of components. Issues addressed include causality and explanation; transcending both realism and relativism; scientists as acting, intervening, and imaginative agents; explanations that span many levels of social practice; counterfactuals in the analysis of causal claims; and practical reflexivity. An analogy from research on the social origins of depression and a sketch from my own experience in socioeconomic (...) modeling are used to motivate and render more concrete the form of heterogeneous constructionism I am advocating. (shrink)
Diagrams refer to the phenomena overtly represented, to analogous phenomena, and to previous pictures and their graphic conventions. The diagrams of ecologists Clarke, Hutchinson, and H.T. Odum reveal their search for physical analogies, building on the success of World War II science and the promise of cybernetics. H.T. Odum's energy circuit diagrams reveal also his aspirations for a universal and natural means of reducing complexity to guide the management of diverse ecological and social systems. Graphic conventions concerning framing and translation (...) of ecological processes onto the flat printed page facilitate Odum's ability to act as if ecological relations were decomposable into systems and could be managed by analysts external to the system. (shrink)
Despite a long history of debates about the heritability of human traits by researchers and other critical commentators, the possible heterogeneity of genetic and environmental factors that underlie patterns in observed traits has not been recognized as a significant conceptual and methodological issue. This article is structured to stimulate a wide range of readers to pursue diverse implications of underlying heterogeneity and of its absence from previous debates. Section 1, a condensed critique of previous conceptualizations and interpretations of heritability studies, (...) consists of three core propositions centered on heterogeneity and six supplementary propositions. Reference is made to agricultural evaluation trials in which a number of different genetically replicable varieties are raised in multiple replicates in one or more locations. In such analyses, the best case for illuminating genetic and environmental factors can be achieved; analyses in human genetics, in contrast, fall far short of the ideal. Section 2 identifies a wide range of questions that invite philosophical, historical, sociological, and scientific inquiry. These are organized under four headings: debate over the conceptual implications of heterogeneity; history of translation of methods from agriculture and laboratory breeding into human genetic analysis; racialized imaginaries in the analysis of differences among groups; and areas of scientific inquiry that may allow more attention to underlying heterogeneity. (shrink)
Using data on the ‘career’ paths of one thousand ‘leading scientists’ from 1450 to 1900, what is conventionally called the ‘rise of modern science’ is mapped as a changing geography of scientific practice in urban networks. Four distinctive networks of scientific practice are identified. A primate network centred on Padua and central and northern Italy in the sixteenth century expands across the Alps to become a polycentric network in the seventeenth century, which in turn dissipates into a weak polycentric network (...) in the eighteenth century. The nineteenth century marks a huge change of scale as a primate network centred on Berlin and dominated by German-speaking universities. These geographies are interpreted as core-producing processes in Wallerstein’s modern world-system; the rise of modern scientific practice is central to the development of structures of knowledge that relate to, but do not mirror, material changes in the system. (shrink)
Estimates of a trait’s heritability can be used to predict the advance through selective breeding in agriculture and the laboratory where researchers can replicate varieties and locations. These conditions do not apply to human populations, yet considerable attention is still given to high heritability and to small effects of family members growing up together relative to differences within families. This article shows that the conventional partitioning of a trait’s variation produces components that cannot be associated reliably with average differences among (...) varieties and locations , let alone underwrite hypotheses about measurable genetic and environmental influences. (shrink)
Noting minimal philosophical attention to the shift of the meanings of “genotype” and “phenotype,” and their distinction, as well as to the variety of meanings that have co-existed over the last hundred years, this note invites readers to join in exploring the implications of shifts that have been left unexamined.
This article describes contrasting ideas for a set of topics in epidemiological thinking. The premise underlying this contribution to the special edition is that researchers develop their epidemiological thinking over time through interactions with other researchers who have a variety of in-practice commitments, such as to kinds of cases and methods of analysis, and not simply to a philosophical framework for explanation. I encourage discussants from philosophy and epidemiology to draw purposefully from across a range of topics and contrasting positions, (...) and thereby pursue critical thinking in the sense of understanding ideas and practices better when we examine them in relation to alternatives. After an initial topic concerning practices for developing epidemiological literacy, a number of conceptual steps follow—the characterization of the very phenomena we might be concerned with, the scope and challenges of the field of epidemiology, the formulation of categories—before linking associations, predictions, causes and interventions and examining the confounding of purported links. Building on that conceptual basis, the remaining topics consist of issues or angles of analysis related to the complexities of inequalities within and between populations, context, and changes over the life course. The organization of topics derives from a graduate course that I teach that aims for epidemiological literacy, not technical ability in statistical formulas and data analysis, and shares the underlying premise and critical thinking goals of this article. During the topic-by-topic description, some assertions about explanation and intervention emerge, notably, that epidemiological–philosophical discussion about causality often leaves unclear or unexamined whether a modifiable factor shown to have been associated with a difference in the data from past observations should be thought of as factor that, when modified, would generate that difference going forward. The article concludes with a “Limitations of this Study” section that teases out different kinds of description–prescription relationship that are implied in undertaking philosophy of epidemiology and identifies some other considerations that are implied but not emphasized by this article. (shrink)
Richard Levins (1930-2016) was an outstanding ecologist, population geneticist, biomathematician, philosopher of science, complexity theorist, and Marxist. Key to all aspects of his work was a dialectical logic of process and change. His work provides a framework for the understanding of crises in environment and society and their analytic relationship with capitalism and imperialism, as well as the tools for the critique of biological determinist justifications for the existing structures of power. This anthology pays tribute to Levins by carrying forward (...) his work in the development of the understanding of the dialectics of nature and society. -/- The contributions are organized into four sections--Dialectics in Wholistic Research; Political Ecology and Health; Complex Systems; and Reminiscences and Tributes. The authors are as almost as hard to label as Levins; the fields they draw from range from biomathematics to NGO activism; environmental policy to island and aquatic ecology; eco-justice podcasting to biogeochemistry; reflective practice to science-in-society, agroecology to public health. (shrink)
Despite the long history of scientific, philosophical, and political debate around heritability studies, certain fundamental conceptual issues have not been recognized or well appreciated. The starting point is that heritability does not measure the degree of influence that genes have on a trait or provide a reliable basis for choosing which traits to investigate further with molecular genetic research. The short argument on this point revolves around two issues: the disconnect between analyzing measurements of a trait and exposing the measurable (...) genetic and environmental factors underlying the trait’s development; and the possibility of heterogeneity in these underlying factors, that is, different factors may lead to the same trait value. The idea of underlying heterogeneity is elaborated through schematic diagrams and distinguished from other senses of heterogeneity. Five conceptually distinct approaches for addressing underlying heterogeneity are identified, corresponding to distinct ways of managing the reciprocal relationship between the degree of knowledge of the dynamics through which the trait develops and the actions that can be reliably be based on what is known . This framework, which extends the interventionist notion of causality, allows the scope and limitations of heritability studies to be clarified in greater detail. It can also inform critical appreciation of newer methods of analysis of genetic and environmental factors. The issues discussed in this article do not centre on empirical data or technical detail and should be accessible to non-specialists as well as challenging active researchers. (shrink)
The social time and space constructs of Manual Castells, Fernand Braudel Immanuel Wallerstein and Jane Jacobs are brought together to provide a set of conceptual tools for understanding contemporary globalization. Three successive globalizations are identified and named for their constellations of power: imperial globalization, American globalization, and corporate globalization. These are treated as unique historical products of modern, rampant urbanizations; each globalization is described as an era of great cities with distinctive worldwide networks. Focusing on urban demand, it is suggested (...) that current corporate globalization might elide into a planetary globalization covering both social and environment relations. (shrink)
I characterize and then complicate Solomon, Thagard and Goldman ' s framing of the issue of integrating cognitive and social factors in explaining science. I sketch a radically different framing which distributes the mind beyond the brain, embodies it, and has that mind - body - person become, as s / he always is, an agent acting in a society. I also find problems in Solomon ' s construal of multivariate statistics, Thagard ' s analogies for multivariate analysis, and Goldman (...) ' s faith in the capacity of the community of users of scientific method to home in on true beliefs. (shrink)
The concept of spatiality is introduced as an analytical tool for studying the modern world-system. The spatialities of cities and states are contrasted as spaces of flows and spaces of places respectively. It is argued that the latter is embedded in the social sciences as an unexamined spatiality. Dis-embedding is achieved through constructing a revisionist world-systems analysis that focuses on cities. This world-systems analysis is then used to describe two world-spatialities, for the current situation and for a generation hence. The (...) conclusion identifies a systemic bifurcation as an anarchist moment. (shrink)
Ecologists grapple with complex, changing situations. Historians, sociologists and philosophers studying the construction of science likewise attempt to account for (or discount) a wide variety of influences making up the scientists' "ecologies of knowledge." This paper introduces a graphic methodology, mapping, designed to assist researchers at both levels-in science and in science studies-to work with the complexity of their material. By analyzing the implications and limitations of mapping, I aim to contribute to an ecological approach to the philosophy of science.
There is growing evidence that some individuals engage in both self-harm and aggression during the course of their lifetime. The co-occurrence of self-harm and aggression is termed dual-harm. Individuals who engage in dual-harm may represent a high-risk group with unique characteristics and pattern of harmful behaviours. Nevertheless, there is an absence of clinical guidelines for the treatment and prevention of dual-harm and a lack of agreed theoretical framework that accounts for why people may engage in this behaviour. The present work (...) aimed to address this gap in the literature by providing a narrative review of previous research of self-harm, aggression and dual-harm, and through doing so, presenting an evidence-based theory of dual-harm – the cognitive-emotional model of dual-harm. This model draws from previous studies and theories, including the General Aggression Model, diathesis-stress models and emotional dysregulation theories. The cognitive-emotional model highlights the potential distal, proximal and feedback processes of dual-harm, the role of personality style and the possible emotional regulation and interpersonal functions of this behaviour. In line with our theory, various clinical and research implications for dual-harm are suggested, including hypotheses to be tested by future studies. (shrink)