Building on self-professed perspectival approaches to both scientific knowledge and causation, I explore the potentially radical suggestion that perspectivalism can be extended to account for a type of objectivity in science. Motivated by recent claims from quantum foundations that quantum mechanics must admit the possibility of observer-dependent facts, I develop the notion of ‘perspectival objectivity’, and suggest that an easier pill to swallow, philosophically speaking, than observer-dependency is perspective-dependency, allowing for a notion of observer-independence indexed to an agent perspective. Working (...) through the case studies of colour perception and causal perspectivalism, I identify two places within which I claim perspectival objectivity is already employed, and make the connection to quantum mechanics through Bohr’s philosophy of quantum theory. I contend that perspectival objectivity can ensure, despite the possibility of perspective-dependent scientific facts, the objectivity of scientific inquiry. (shrink)
Skow ([2007]), and much more recently Callender ([2017]), argue that time can be distinguished from space due to the special role it plays in our laws of nature: our laws determine the behaviour of physical systems across time, but not across space. In this work we assess the claim that the laws of nature might provide the basis for distinguishing time from space. We find that there is an obvious reason to be sceptical of the argument Skow submits for distinguishing (...) time from space: Skow fails to pay sufficient attention to the relationship between the dynamical laws and the antecedent conditions required to establish a complete solution from the laws. Callender’s more sophisticated arguments in favour of distinguishing time from space by virtue of the laws of nature presents a much stronger basis to draw the distinction. By developing a radical reading of Callender’s view we propose a novel approach to differentiating time and space that we call temporal perspectivalism. This is the view according to which the difference between time and space is a function of the agentive perspective. (shrink)
The best case for thinking that quantum mechanics is nonlocal rests on Bell's Theorem, and later results of the same kind. However, the correlations characteristic of Einstein–Podolsky–Rosen (EPR)–Bell (EPRB) experiments also arise in familiar cases elsewhere in quantum mechanics (QM), where the two measurements involved are timelike rather than spacelike separated; and in which the correlations are usually assumed to have a local causal explanation, requiring no action-at-a-distance (AAD). It is interesting to ask how this is possible, in the light (...) of Bell's Theorem. We investigate this question, and present two options. Either (i) the new cases are nonlocal too, in which case AAD is more widespread in QM than has previously been appreciated (and does not depend on entanglement, as usually construed); or (ii) the means of avoiding AAD in the new cases extends in a natural way to EPRB, removing AAD in these cases too. There is a third option, viz., that the new cases are strongly disanalogous to EPRB. But this option requires an argument, so far missing, that the physical world breaks the symmetries which otherwise support the analogy. In the absence of such an argument, the orthodox combination of views—action-at-a-distance in EPRB, but local causality in its timelike analogue—is less well established than it is usually assumed to be. 1 Introduction1.1 Background1.2 Outline of the argument2 The Experiments2.1 Standard EPRB2.2 Sideways EPRB2.3 Comparing the experiments2.4 The need for beables3 The Symmetry Considerations3.1 The action symmetry3.2 Time-symmetry in SEPRB4 The Basic Trilemma4.1 An intuitive defence of Option III?5 Avoiding the Trilemma?6 The Classical Objection7 Defending Option III7.1 The free will argument7.2 Independence and consistency8 Entanglement and Epistemic Perspective. (shrink)
To demarcate the limits of experimental knowledge, we probe the limits of what might be called an experiment. By appeal to examples of scientific practice from astrophysics and analogue gravity, we demonstrate that the reliability of knowledge regarding certain phenomena gained from an experiment is not circumscribed by the manipulability or accessibility of the target phenomena. Rather, the limits of experimental knowledge are set by the extent to which strategies for what we call ‘inductive triangulation’ are available: that is, the (...) validation of the mode of inductive reasoning involved in the source-target inference via appeal to one or more distinct and independent modes of inductive reasoning. When such strategies are able to partially mitigate reasonable doubt, we can take a theory regarding the phenomena to be well supported by experiment. When such strategies are able to fully mitigate reasonable doubt, we can take a theory regarding the phenomena to be established by experiment. There are good reasons to expect the next generation of analogue experiments to provide genuine knowledge of unmanipulable and inaccessible phenomena such that the relevant theories can be understood as well supported. This article is part of a discussion meeting issue ‘The next generation of analogue gravity experiments’. (shrink)
Wood and Spekkens argue that any causal model explaining the EPRB correlations and satisfying the no-signalling constraint must also violate the assumption that the model faithfully reproduces the statistical dependences and independences—a so-called ‘fine-tuning’ of the causal parameters. This includes, in particular, retrocausal explanations of the EPRB correlations. I consider this analysis with a view to enumerating the possible responses an advocate of retrocausal explanations might propose. I focus on the response of Näger, who argues that the central ideas of (...) causal explanations can be saved if one accepts the possibility of a stable fine-tuning of the causal parameters. I argue that in light of this view, a violation of faithfulness does not necessarily rule out retrocausal explanations of the EPRB correlations. However, when we consider a plausible retrocausal picture in some detail, it becomes clear that the causal modelling framework is not a natural arena for representing such an account of retrocausality. _1_ Causal Models, Quantum Mechanics, and Faithfulness _2_ Fine-Tuning _2.1_ Fine-tuning in a retrocausal model _3_ Possible Responses _4_ Quantum Causal Models and Retrocausality _4.1_ A more detailed retrocausal account _4.2_ A model of the EPRB probabilities _4.3_ Mapping to a causal model _5_ Conclusion. (shrink)
This paper addresses the extent to which both Julian Barbour‘s Machian formulation of general relativity and his interpretation of canonical quantum gravity can be called timeless. We differentiate two types of timelessness in Barbour‘s (1994a, 1994b and 1999c). We argue that Barbour‘s metaphysical contention that ours is a timeless world is crucially lacking an account of the essential features of time—an account of what features our world would need to have if it were to count as being one in which (...) there is time. We attempt to provide such an account through considerations of both the representation of time in physical theory and in orthodox metaphysical analyses. We subsequently argue that Barbour‘s claim of timelessness is dubious with respect to his Machian formulation of general relativity but warranted with respect to his interpretation of canonical quantum gravity. We conclude by discussing the extent to which we should be concerned by the implications of Barbour‘s view. (shrink)
One obstacle faced by proposals of retrocausal influences in quantum mechanics is the perceived high conceptual cost of making such a proposal. I assemble here a metaphysical picture consistent with the possibility of retrocausality and not precluded by the known physical structure of our reality. This picture employs two relatively well-established positions—the block universe model of time and the interventionist account of causation—and requires the dismantling of our ordinary asymmetric causal intuition and our ordinary intuition about epistemic access to the (...) past. The picture is then built upon an existing model of agent deliberation that permits us to strike a harmony between our causal intuitions and the fixity of the block universe view. I conclude that given the right mix of these reasonable metaphysical and epistemological ingredients there is no conceptual cost to such a retrocausal picture of quantum mechanics. (shrink)
The principle of common cause asserts that positive correlations between causally unrelated events ought to be explained through the action of some shared causal factors. Reichenbachian common cause systems are probabilistic structures aimed at accounting for cases where correlations of the aforesaid sort cannot be explained through the action of a single common cause. The existence of Reichenbachian common cause systems of arbitrary finite size for each pair of non-causally correlated events was allegedly demonstrated by Hofer-Szabó and Rédei in 2006. (...) This paper shows that their proof is logically deficient, and we propose an improved proof. (shrink)
Despite attempts to apply causal modeling techniques to quantum systems, Wood and Spekkens argue that any causal model purporting to explain quantum correlations must be fine tuned; it must violate the assumption of faithfulness. This paper is an attempt to undermine the reasonableness of the assumption of faithfulness in the quantum context. Employing a symmetry relation between an entangled quantum system and a “sideways” quantum system consisting of a single photon passing sequentially through two polarizers, I argue that Wood and (...) Spekkens’s analysis applies equally to this sideways system also. As a result, we must either reject a causal explanation in this single photon system, or the sideways system must be fine tuned. If the latter, a violation of faithfulness in the ordinary entangled system may be more tolerable than first thought. Thus, extending the classical “no fine-tuning” principle of parsimony to the quantum realm may be too hasty. (shrink)
A recent series of experiments have demonstrated that a classical fluid mechanical system, constituted by an oil droplet bouncing on a vibrating fluid surface, can be induced to display a number of behaviours previously considered to be distinctly quantum. To explain this correspondence it has been suggested that the fluid mechanical system provides a single-particle classical model of de Broglie’s idiosyncratic ‘double solution’ pilot wave theory of quantum mechanics. In this paper we assess the epistemic function of the bouncing oil (...) droplet experiments in relation to quantum mechanics. We find that the bouncing oil droplets are best conceived as an analogue illustration of quantum phenomena, rather than an analogue simulation, and, furthermore, that their epistemic value should be understood in terms of how-possibly explanation, rather than confirmation. Analogue illustration, unlike analogue simulation, is not a form of ‘material surrogacy’, in which source empirical phenomena in a system of one kind can be understood as ‘standing in for’ target phenomena in a system of another kind. Rather, analogue illustration leverages a correspondence between certain empirical phenomena displayed by a source system and aspects of the ontology of a target system. On the one hand, this limits the potential inferential power of analogue illustrations, but, on the other, it widens their potential inferential scope. In particular, through analogue illustration we can learn, in the sense of gaining how-possibly understanding, about the putative ontology of a target system via an experiment. As such, the potential scientific value of these extraordinary experiments is undoubtedly a significant one. (shrink)
This paper provides a prospectus for a new way of thinking about the wavefunction of the universe: a Ψ-epistemic quantum cosmology. We present a proposal that, if successfully implemented, would resolve the cosmological measurement problem and simultaneously allow us to think sensibly about probability and evolution in quantum cosmology. Our analysis draws upon recent work on the problem of time in quantum gravity and causally symmet- ric local hidden variable theories. Our conclusion weighs the strengths and weaknesses of the approach (...) and points towards paths for future development. (shrink)
This thesis is a study of the notion of time in modern physics, consisting of two parts. Part I takes seriously the doctrine that modern physics should be treated as the primary guide to the nature of time. To this end, it offers an analysis of the various conceptions of time that emerge in the context of various physical theories and, furthermore, an analysis of the relation between these conceptions of time and the more orthodox philosophical views on the nature (...) of time. In Part II I explore the interpretation of nonrelativistic quantum mechanics in light of the suggestion that an overly Newtonian conception of time might be contributing to some of the difficulties that we face in interpreting the quantum mechanical formalism. In particular, I argue in favour of introducing backwards-in-time causal influences as part of an alternative conception of time that is consistent with the picture of reality that arises in the context of the quantum formalism. Moreover, I demonstrate that this conception of time can already be found in a particular formulation of classical mechanics. One might see that one of the central themes of Part II originates from a failure to heed properly the doctrine of Part I: study into the nature of time should be guided by modern physics and thus we should be careful not to insert a preconceived Newtonian conception of time unwittingly into our interpretation of the quantum mechanical formalism. Thus, whereas Part I is intended as a demonstration of methodology with respect to the study of time, Part II in a sense explores a confusion that can be seen as arising in the absence of this methodology. (shrink)
Based on months of conversations with Onassis and interviews with those who knew him, this biography reveals the complex personality of the man whose business dealings manipulated history and shook governments.
This book examines the rebirth of a staple Hollywood genre. Taking into account romantic comedy's current popularity and the genre's adaptability to changing historical circumstances, as well as its powerful tendency to contain and assimilate social changes, it explores the complex ways in which recent cultural discourses on gender and sexuality have found their way into the apparently inflexible structure of romantic comedy.
Pearl and Woodward are both well-known advocates of interventionist causation. What is less well-known is the interesting relationship between their respective accounts. In this paper we discuss the different perspectives of causation these two accounts present and show that they are two sides of the same coin. Pearl’s focus is on leveraging global network constraints to correctly identify local causal relations. The rules by which global causal structures are composed from distinct causal relations are precisely defined by the global constraints. (...) Woodward’s focus, however, is on the use of local manipulation to identify single causal relations that then compose into global causal structures. The rules by which this composition takes place emerge as a result of local interventionist constraints. We contend that the complete picture of causality to be found between these two perspectives from the interventionist tradition must recognise both the global constraints of the sort identified by Pearl and the local constraints of the sort identified by Woodward, and the interplay between them: Pearl requires the possibility of local interventions and Woodward requires a global statistical framework within which to build composite causal structures. (shrink)
The different interpretations of quark mixing involved in weak interaction processes in the Standard Model and the Generation Model are discussed with a view to obtaining a physical understanding of the Cabibbo angle and related quantities. It is proposed that hadrons are composed of mixed-quark states, with the quark mixing parameters being determined by the Cabibbo-Kobayashi-Maskawa matrix elements. In this model, protons and neutrons contain a contribution of about 5% and 10%, respectively, of strange valency quarks.