10 found
Order:
  1. On the strength of Ramsey's theorem for pairs.Peter A. Cholak, Carl G. Jockusch & Theodore A. Slaman - 2001 - Journal of Symbolic Logic 66 (1):1-55.
    We study the proof-theoretic strength and effective content of the infinite form of Ramsey's theorem for pairs. Let RT n k denote Ramsey's theorem for k-colorings of n-element sets, and let RT $^n_{ denote (∀ k)RT n k . Our main result on computability is: For any n ≥ 2 and any computable (recursive) k-coloring of the n-element sets of natural numbers, there is an infinite homogeneous set X with X'' ≤ T 0 (n) . Let IΣ n and BΣ (...)
    Direct download (9 more)  
     
    Export citation  
     
    Bookmark   57 citations  
  2.  77
    On the definability of the double jump in the computably enumerable sets.Peter A. Cholak & Leo A. Harrington - 2002 - Journal of Mathematical Logic 2 (02):261-296.
    We show that the double jump is definable in the computably enumerable sets. Our main result is as follows: let [Formula: see text] is the Turing degree of a [Formula: see text] set J ≥T0″}. Let [Formula: see text] such that [Formula: see text] is upward closed in [Formula: see text]. Then there is an ℒ property [Formula: see text] such that [Formula: see text] if and only if there is an A where A ≡T F and [Formula: see text]. (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   5 citations  
  3.  87
    (1 other version)Definable encodings in the computably enumerable sets.Peter A. Cholak & Leo A. Harrington - 2000 - Bulletin of Symbolic Logic 6 (2):185-196.
    The purpose of this communication is to announce some recent results on the computably enumerable sets. There are two disjoint sets of results; the first involves invariant classes and the second involves automorphisms of the computably enumerable sets. What these results have in common is that the guts of the proofs of these theorems uses a new form of definable coding for the computably enumerable sets.We will work in the structure of the computably enumerable sets. The language is just inclusion, (...)
    Direct download (11 more)  
     
    Export citation  
     
    Bookmark   4 citations  
  4.  96
    The complexity of orbits of computably enumerable sets.Peter A. Cholak, Rodney Downey & Leo A. Harrington - 2008 - Bulletin of Symbolic Logic 14 (1):69 - 87.
    The goal of this paper is to announce there is a single orbit of the c.e. sets with inclusion, ε, such that the question of membership in this orbit is ${\Sigma _1^1 }$ -complete. This result and proof have a number of nice corollaries: the Scott rank of ε is $\omega _1^{{\rm{CK}}}$ + 1; not all orbits are elementarily definable; there is no arithmetic description of all orbits of ε; for all finite α ≥ 9, there is a properly $\Delta (...)
    Direct download (9 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  5.  81
    Iterated relative recursive enumerability.Peter A. Cholak & Peter G. Hinman - 1994 - Archive for Mathematical Logic 33 (5):321-346.
    A result of Soare and Stob asserts that for any non-recursive r.e. setC, there exists a r.e.[C] setA such thatA⊕C is not of r.e. degree. A setY is called [of]m-REA (m-REA[C] [degree] iff it is [Turing equivalent to] the result of applyingm-many iterated ‘hops’ to the empty set (toC), where a hop is any function of the formX→X ⊕W e X . The cited result is the special casem=0,n=1 of our Theorem. Form=0,1, and any (m+1)-REA setC, ifC is not ofm-REA (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  6.  56
    Isomorphisms of splits of computably enumerable sets.Peter A. Cholak & Leo A. Harrington - 2003 - Journal of Symbolic Logic 68 (3):1044-1064.
    We show that if A and $\widehat{A}$ are automorphic via Φ then the structures $S_{R}(A)$ and $S_{R}(\widehat{A})$ are $\Delta_{3}^{0}-isomorphic$ via an isomorphism Ψ induced by Φ. Then we use this result to classify completely the orbits of hhsimple sets.
    Direct download (10 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  7.  58
    -Maximal sets.Peter A. Cholak, Peter Gerdes & Karen Lange - 2015 - Journal of Symbolic Logic 80 (4):1182-1210.
    Soare [20] proved that the maximal sets form an orbit in${\cal E}$. We consider here${\cal D}$-maximal sets, generalizations of maximal sets introduced by Herrmann and Kummer [12]. Some orbits of${\cal D}$-maximal sets are well understood, e.g., hemimaximal sets [8], but many are not. The goal of this paper is to define new invariants on computably enumerable sets and to use them to give a complete nontrivial classification of the${\cal D}$-maximal sets. Although these invariants help us to better understand the${\cal D}$-maximal (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  8.  25
    On Mathias generic sets.Peter A. Cholak, Damir D. Dzhafarov & Jeffry L. Hirst - 2012 - In S. Barry Cooper, How the World Computes. pp. 129--138.
  9.  35
    On n -tardy sets.Peter A. Cholak, Peter M. Gerdes & Karen Lange - 2012 - Annals of Pure and Applied Logic 163 (9):1252-1270.
  10.  28
    Corrigendum to: "On the Strength of Ramsey's Theorem for Pairs".Peter A. Cholak, Carl G. Jockusch & Theodore A. Slaman - 2009 - Journal of Symbolic Logic 74 (4):1438 - 1439.