The Fraenkel-Mostowski method has been widely used to prove independence results among weak versions of the axiom of choice. In this paper it is shown that certain statements cannot be proved by this method. More specifically it is shown that in all Fraenkel-Mostowski models the following hold: 1. The axiom of choice for sets of finite sets implies the axiom of choice for sets of well-orderable sets. 2. The Boolean prime ideal theorem implies a weakened form of Sikorski's theorem.
Let NBG be von Neumann-Bernays-Gödel set theory without the axiom of choice and let NBGA be the modification which allows atoms. In this paper we consider some of the well-known class or global forms of the wellordering theorem, the axiom of choice, and maximal principles which are known to be equivalent in NBG and show they are not equivalent in NBGA.
In set theory without the Axiom of Choice, we investigate the set-theoretic strength of the principle NDS which states that there is no function f on the set ω of natural numbers such that for everyn ∈ ω, f ≺ f, where for sets x and y, x ≺ y means that there is a one-to-one map g : x → y, but no one-to-one map h : y → x. It is a long standing open problem whether NDS implies (...) AC. In this paper, among other results, we show that NDS is a strong axiom by establishing that ACLO ↛ NDS in ZFA set theory. The latter result provides a strongly negative answer to the question of whether “every Dedekind-finite set is finite” implies NDS addressed in G. H. Moore “Zermelo’s Axiom of Choice. Its Origins, Development, and Influence” and in P. Howard–J. E. Rubin “Consequences of the Axiom of Choice”. We also prove that ACWO ↛ NDS in ZF and that “for all infinite cardinals m, m + m = m” ↛ NDS in ZFA. (shrink)
This is a continuation of [2]. We study the Tychonoff Compactness Theorem for various definitions of compactness and for various types of spaces . We also study well ordered Tychonoff products and the effect that the multiple choice axiom has on such products.
A Dedekind-finite set is said to be divisible by a natural number n if it can be partitioned into pieces of size n. We study several aspects of this notion, as well as the stronger notion of being partitionable into n pieces of equal size. Among our results are that the divisors of a Dedekind-finite set can consistently be any set of natural numbers, that a Dedekind-finite power of 2 cannot be divisible by 3, and that a Dedekind-finite set can (...) be congruent modulo 3, to all of 0, 1, and 2 simultaneously. (shrink)
We show that it is not possible to construct a Fraenkel-Mostowski model in which the axiom of choice for well-ordered families of sets and the axiom of choice for sets are both true, but the axiom of choice is false.
We study statements about countable and well-ordered unions and their relation to each other and to countable and well-ordered forms of the axiom of choice. Using WO as an abbreviation for “well-orderable”, here are two typical results: The assertion that every WO family of countable sets has a WO union does not imply that every countable family of WO sets has a WO union; the axiom of choice for WO families of WO sets does not imply that the countable union (...) of countable sets is WO. (shrink)
We prove the independence of some weakenings of the axiom of choice related to the question if the unions of wellorderable families of wellordered sets are wellorderable.
We investigate the set theoretical strength of some properties of normality, including Urysohn's Lemma, Tietze-Urysohn Extension Theorem, normality of disjoint unions of normal spaces, and normality of Fσ subsets of normal spaces.
In Zermelo-Fraenkel set theory with the axiom of choice every set has the same cardinal number as some ordinal. Von Rimscha has weakened this condition to “Every set has the same cardinal number as some transitive set”. In set theory without the axiom of choice, we study the deductive strength of this and similar statements introduced by von Rimscha.
We investigate, within the framework of Zermelo-Fraenkel set theory ZF, the interrelations between weak forms of the Axiom of Choice AC restricted to sets of reals.
Two theorems are proved: First that the statement“there exists a field F such that for every vector space over F, every generating set contains a basis”implies the axiom of choice. This generalizes theorems of Halpern, Blass, and Keremedis. Secondly, we prove that the assertion that every vector space over ℤ2 has a basis implies that every well-ordered collection of two-element sets has a choice function.
We establish that, in ZF, the statementRLT: Given a setIand a non-empty setF\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{F}}$$\end{document}of non-empty elementary closed subsets of 2Isatisfying the fip, ifF\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{F}}$$\end{document}has a choice function, then⋂F≠∅\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\bigcap\mathcal{F} \ne \emptyset}$$\end{document},which was introduced in Morillon :739–749, 2012), is equivalent to the Boolean Prime Ideal Theorem. The result provides, on one hand, an affirmative answer to Morillon’s corresponding (...) question in Morillon and, on the other hand, a negative answer—in the setting of ZFA —to the question in Morillon of whether RLT is equivalent to Rado’s selection lemma. (shrink)
The axiom of multiple choice implies that metric spaces are paracompact but the reverse implication cannot be proved in set theory without the axiom of choice.
Two Fraenkel-Mostowski models are constructed in which the Boolean Prime Ideal Theorem is true. In both models, AC for countable sets is true, but AC for sets of cardinality 2math image and the 2m = m principle are both false. The Principle of Dependent Choices is true in the first model, but false in the second.
The deductive strengths of three variations of Rado's selection lemma are studied in set theory without the axiom of choice. Two are shown to be equivalent to Rado's lemma and the third to the Boolean prime ideal theorem. MSC: 03E25, 04A25, 06E05.
We study conditions for a topological space to be metrizable, properties of metrizable spaces, and the role the axiom of choice plays in these matters.
We study properties of certain subclasses of the Dedekind finite sets in set theory without the axiom of choice with respect to the comparability of their elements and to the boundedness of such classes, and we answer related open problems from Herrlich’s “The Finite and the Infinite.” The main results are as follows: 1. It is relatively consistent with ZF that the class of all finite sets is not the only finiteness class such that any two of its elements are (...) comparable. 2. The principle “Small Violations of Choice” —introduced by A. Blass—implies that the class of all Dedekind finite sets is bounded above. 3. “The class of all Dedekind finite sets is bounded above” is true in every permutation model of ZFA in which the class of atoms is a set, and in every symmetric model of ZF. 4. There exists a model of ZFA set theory in which the class of all atoms is a proper class and in which the class of all infinite Dedekind finite sets is not bounded above. 5. There exists a model of ZF in which the class of all infinite Dedekind finite sets is not bounded above. (shrink)
The deductive relationships between six statements are examined in set theory without the axiom of choice. Each of these statements follows from the axiom of choice and involves linear orderings in some way.
We show that the assertion that every vector space is a projective module implies the axiom of multiple choice and that the reverse implication does not hold in set theory weakened to permit the existence of atoms.