Modal counterparts of intermediate predicate logics will be studied by means of algebraic devise. Our main tool will be a construction of algebraic semantics for modal logics from algebraic frames for predicate logics. Uncountably many examples of modal counterparts of intermediate predicate logics will be given.
We discuss relationships among the existence property, the disjunction property, and their weak variants in the setting of intermediate predicate logics. We deal with the weak and sentential existence properties, and the Z-normality, which is a weak variant of the disjunction property. These weak variants were presented in the author’s previous paper [16]. In the present paper, the Kripke sheaf semantics is used.
In [STU 00, KUT 03] we introduced a family of ‘modal' languages intended for talking about distances. These languages are interpreted in ‘distance spaces' which satisfy some of the standard axioms of metric spaces. Among other things, we singled out decidable logics of distance spaces and proved expressive completeness results relating classical and modal languages. The aim of this paper is to axiomatize the modal fragments of the semantically defined distance logics of [KUT 03] and give a new proof of (...) their decidability. (shrink)
Some properties of Kripke-sheaf semantics for super-intuitionistic predicate logics are shown. The concept ofp-morphisms between Kripke sheaves is introduced. It is shown that if there exists ap-morphism from a Kripke sheaf 1 into 2 then the logic characterized by 1 is contained in the logic characterized by 2. Examples of Kripke-sheaf complete and finitely axiomatizable super-intuitionistic (and intermediate) predicate logics each of which is Kripke-frame incomplete are given. A correction to the author's previous paper Kripke bundles for intermediate predicate logics (...) and Kripke frames for intuitionistic modal logics (Studia Logica, 49(1990), pp. 289–306 ) is stated. (shrink)
Wajsberg and Jankov provided us with methods of constructing a continuum of logics. However, their methods are not suitable for super-intuitionistic and modal predicate logics. The aim of this paper is to present simple ways of modification of their methods appropriate for such logics. We give some concrete applications as generic examples. Among others, we show that there is a continuum of logics (1) between the intuitionistic predicate logic and the logic of constant domains, (2) between a predicate extension ofS4 (...) andS4 with the Barcan formula. Furthermore, we prove that (3) there is a continuum of predicate logics with equality whose equality-free fragment is just the intuitionistic predicate logic. (shrink)
In order to capture the concept of common knowledge, various extensions of multi-modal epistemic logics, such as fixed-point ones and infinitary ones, have been proposed. Although we have now a good list of such proposed extensions, the relationships among them are still unclear. The purpose of this paper is to draw a map showing the relationships among them. In the propositional case, these extensions turn out to be all Kripke complete and can be comparable in a meaningful manner. F. Wolter (...) showed that the predicate extension of the Halpern-Moses fixed-point type common knowledge logic is Kripke incomplete. However, if we go further to an infinitary extension, Kripke completeness would be recovered. Thus there is some gap in the predicate case. In drawing the map, we focus on what is happening around the gap in the predicate case. The map enables us to better understand the common knowledge logics as a whole. (shrink)
One criterion of constructive logics is the disjunction, property (DP). The Halldén-completeness is a weak DP, and is related to the relevance principle and variable separation. This concept is well-understood in the case of propositional logics. We extend this notion to predicate logics. Then three counterparts naturally arise. We discuss relationships between these properties and meet-irreducibility in the lattice of logics.
We develop a series of small infinitary epistemic logics to study deductive inference involving intra-/interpersonal beliefs/knowledge such as common knowledge, common beliefs, and infinite regress of beliefs. Specifically, propositional epistemic logics GL are presented for ordinal α up to a given αo so that GL is finitary KDn with n agents and GL allows conjunctions of certain countably infinite formulae. GL is small in that the language is countable and can be constructive. The set of formulae Lα is increasing up (...) to α = ω but stops at ω We present Kripke-completeness for GL for each α ≤ ω, which is proved using the Rasiowa–Sikorski lemma and Tanaka–Ono lemma. GL has a sufficient expressive power to discuss intra-/interpersonal beliefs with infinite lengths. As applications, we discuss the explicit definability of Axioms T, 4, 5, and of common knowledge in GL Also, we discuss the rationalizability concept in game theory in our framework. We evaluate where these discussions are done in the series GL, α ≤ ω. (shrink)
A possible world structure consist of a set W of possible worlds and an accessibility relation R. We take a partial function r(·,·) to the unit interval [0, 1] instead of R and obtain a Kripke frame with graded accessibility r Intuitively, r(x, y) can be regarded as the reliability factor of y from x We deal with multimodal logics corresponding to Kripke frames with graded accessibility in a fairly general setting. This setting provides us with a framework for fuzzy (...) possible world semantics. The basic propositional multimodal logic gK (grated K) is defined syntactically. We prove that gK is sound and complete with respect to this semantics. We discuss some extensions of gK including logics of similarity relations and of fuzzy orderings. We present a modified filtration method and prove that gK and its extensions introduced here are decidable. (shrink)
Kaneko-Suzuki developed epistemic logics of shallow depths with multiple players for investigations of game theoretical problems. By shallow depth, we mean that nested occurrences of belief operators of players in formulae are restricted, typically to be of finite depths, by a given epistemic structure. In this paper, we develop various methods of surgical operations (cut and paste) of epistemic world models. An example is a bouquet-making, i.e., tying several models into a bouquet. Another example is to engraft a model to (...) some branches of another model. By these methods, we obtain various meta-theorems on semantics and syntax on epistemic logics. To illustrate possible uses of our meta-theorems, we present one game theoretical theorem, which is also a meta-theorem in the sense of logic. (shrink)
In so-called Kripke-type models, each sentence is assigned either to true or to false at each possible world. In this setting, every possible world has the two-valued Boolean algebra as the set of truth values. Instead, we take a collection of algebras each of which is attached to a world as the set of truth values at the world, and obtain an extended semantics based on the traditional Kripke-type semantics, which we call here the algebraic Kripke semantics. We introduce algebraic (...) Kripke sheaf semantics for super-intuitionistic and modal predicate logics, and discuss some basic properties. We can state the Gödel-McKinsey-Tarski translation theorem within this semantics. Further, we show new results on super-intuitionistic predicate logics. We prove that there exists a continuum of super-intuitionistic predicate logics each of which has both of the disjunction and existence properties and moreover the same propositional fragment as the intuitionistic logic. (shrink)