Important features of space and time are taken to be missing in quantum gravity, allegedly requiring an explanation of the emergence of spacetime from non-spatio-temporal theories. In this paper, we argue that the explanatory gap between general relativity and non-spatio- temporal quantum gravity theories might significantly be reduced with two moves. First, we point out that spacetime is already partially missing in the context of general relativity when understood from a dynamical perspective. Second, we argue that most approaches to quantum (...) gravity already start with an in-built distinction between structures to which the asymmetry between space and time can be traced back. (shrink)
Principles are central to physical reasoning, particularly in the search for a theory of quantum gravity (QG), where novel empirical data is lacking. One principle widely adopted in the search for QG is UV completion: the idea that a theory should (formally) hold up to all possible high energies. We argue---/contra/ standard scientific practice---that UV-completion is poorly-motivated as a guiding principle in theory-construction, and cannot be used as a criterion of theory-justification in the search for QG. For this, we explore (...) the reasons for expecting, or desiring, a UV-complete theory, as well as analyse how UV completion is used, and how it should be used, in various specific approaches to QG. (shrink)
Principles are central to physical reasoning, particularly in the search for a theory of quantum gravity, where novel empirical data are lacking. One principle widely adopted in the search for QG is ultraviolet completion: the idea that a theory should hold up to all possible high energies. We argue— contra standard scientific practice—that UV-completion is poorly motivated as a guiding principle in theory-construction, and cannot be used as a criterion of theory-justification in the search for QG. For this, we explore (...) the reasons for expecting, or desiring, a UV-complete theory, as well as analyse how UV-completion is used, and how it should be used, in various specific approaches to QG. 1Introduction 1.1Principles in theory development and evaluation 2Primer on UV-Completion, Renormalizability, and All That 2.1Renormalizability and UV-completion 2.2Other forms of UV-completion 3Why Should QG Be UV-Complete? 3.1UV-completion and fundamentality 3.2UV-completion and minimal length 4UV-Completion in Different Approaches to QG 4.1String theory 4.2Asymptotic safety 4.3Causal dynamical triangulation 4.4Higher derivative approaches 4.5Supergravity 4.6Causal set theory 4.7Canonical QG 4.8Loop quantum gravity 4.9Approaches based on alternative gravitational theories 4.10Emergent gravity approaches 5UV-Completion as a Guiding Principle in QG 6Conclusion. (shrink)
Analogue experiments have attracted interest for their potential to shed light on inaccessible domains. For instance, ‘dumb holes’ in fluids and Bose–Einstein condensates, as analogues of black holes, have been promoted as means of confirming the existence of Hawking radiation in real black holes. We compare analogue experiments with other cases of experiment and simulation in physics. We argue—contra recent claims in the philosophical literature—that analogue experiments are not capable of confirming the existence of particular phenomena in inaccessible target systems. (...) As they must assume the physical adequacy of the modelling framework used to describe the inaccessible target system, arguments to the conclusion that analogue experiments can yield confirmation for phenomena in those target systems, such as Hawking radiation in black holes, beg the question. (shrink)
A possible way out of the conundrum of quantum gravity is the proposal that general relativity (GR) emerges from an underlying microscopic description. Despite recent interest in the emergent gravity program within the physics as well as the philosophy community, an assessment of the general motivation for this idea is lacking at the moment. We intend to fill this gap in the literature by discussing the main arguments in favour of the hypothesis that the metric field and its dynamics are (...) emergent. First, we distinguish between microstructure inspired from GR, such as through quantization or discretization, and microstructure that is not directly motivated from GR, such as strings, quantum bits or condensed matter fields. The emergent gravity approach can then be defined as the view that the metric field and its dynamics are derivable from the latter type of microstructure. Subsequently, we assess in how far the following properties of (semi-classical) GR are suggestive of underlying microstructure: (1) the metric's universal coupling to matter fields, (2) perturbative non-renormalizability, (3) black hole thermodynamics, and (4) the holographic principle. In the conclusion we formalize the general structure of the plausibility arguments put forward. (shrink)
Recent work in the physics literature demonstrates that, in particular classes of rotating spacetimes, physical light rays in general do not traverse null geodesics. Having presented this result, we discuss its philosophical significance, both for the clock hypothesis, and for the operational meaning of the metric field.
A common feature of all standard theories of the laws of nature is that they are "absolutist": They take laws to be either all metaphysically necessary or all contingent. Science, however, gives us reason to think that there are laws of both kinds, suggesting that standard theories should make way for "non-absolutist" alternatives: theories which accommodate laws of both modal statuses. In this paper, we set out three explanatory challenges for any candidate non-absolutist theory and discuss the prospects of the (...) two extant candidates in light of these challenges. We then develop our own non-absolutist theory, the essentialist DTA account, which combines the nomic-necessitation or DTA account with an essentialist approach to metaphysical modality in order to meet the three explanatory challenges. Finally, we argue that the distinction between kinematical and dynamical laws found in physical theories supports both non-absolutism in general and our proposed essentialist DTA view in particular. (shrink)
We discuss the status of gravitational radiation in Newtonian theories. In order to do so, we consider various options for interpreting the Poisson equation as encoding propagating solutions, reflect on the extent to which limit considerations from general relativity can shed light on the Poisson equation’s conceptual status, and discuss various senses in which the Poisson equation counts as a dynamical equation.
How does metaphysical necessity relate to the modal force often associated with natural laws? Fine argues that natural necessity can neither be obtained from metaphysical necessity via forms of restriction nor of relativization — and therefore pleads for modal pluralism concerning natural and metaphysical necessity. Wolff, 898–906, 2013) aims at providing illustrative examples in support of applying Fine’s view to the laws of nature with specific recourse to the laws of physics: On the one hand, Wolff takes it that equations (...) of motion can count as examples of physical laws that are only naturally but not metaphysically necessary. On the other hand, Wolff argues that a certain conservation law obtainable via Noether’s second theorem is an instance of a metaphysically necessary physical law. I show how Wolff’s example for a putatively metaphysically necessary conservation law fails but argue that so-called topological currents can nevertheless count as metaphysically necessary conservation laws carrying physical content. I conclude with a remark on employing physics to answer questions in metaphysics. (shrink)
In a recent paper, Tuomas Tahko has argued for a hybrid view of the laws of nature, according to which some physical laws are metaphysically necessary, while others are metaphysically contingent. In this paper, we show that his criterion for distinguishing between these two kinds of laws — which crucially relies on the essences of natural kinds — is on its own unsatisfactory. We then propose an alternative way of drawing the metaphysically necessary/contingent distinction for laws of physics based on (...) the central kinematical/dynamical distinction used in physical theorising, and argue that the criterion can be used to amend Tahko’s own account, but also that it can be combined with different metaphysical views about the source of necessity. (shrink)
The empirical coherence problem of quantum gravity is the worry that a theory which does not fundamentally contain local beables located in space and time—such as is arguably the case for certain approaches to quantum gravity—cannot be connected to measurements and thus has its prospects of being empirically adequate undermined. Spacetime functionalism à la Lam and Wüthrich is said to solve this empirical coherence problem as well as bridging a severe conceptual gap between spatiotemporal structures of classical spacetime theories on (...) the one hand, and the non-spatiotemporal structures in quantum gravity approaches on the other hand. The aim of this essay is to offer a deflationary account of both the empirical coherence problem and the spatiotemporal gap problem as they are claimed to arise at least prima facie for current theories of quantum gravity by Huggett and Wüthrich :276–285, 2013), Lam and Wüthrich and Le Bihan. I defend the view that spacetime functionalism is set up to address a problem which can usually be solved without it; and that it is wrongly claimed to solve another problem which for any actual account of quantum gravity is in fact currently non-existent anyway. (shrink)
The empirical coherence problem of quantum gravity is the worry that a theory which does not fundamentally contain local beables located in space and time—such as is arguably the case for certain approaches to quantum gravity—cannot be connected to measurements and thus has its prospects of being empirically adequate undermined. Spacetime functionalism à la Lam and Wüthrich is said to solve this empirical coherence problem as well as bridging a severe conceptual gap between spatiotemporal structures of classical spacetime theories on (...) the one hand, and the non-spatiotemporal structures in quantum gravity approaches on the other hand. The aim of this essay is to offer a deflationary account of both the empirical coherence problem and the spatiotemporal gap problem as they are claimed to arise at least prima facie for current theories of quantum gravity by Huggett and Wüthrich :276–285, 2013), Lam and Wüthrich and Le Bihan. I defend the view that spacetime functionalism is set up to address a problem which can usually be solved without it; and that it is wrongly claimed to solve another problem which for any actual account of quantum gravity is in fact currently non-existent anyway. (shrink)
In a recent article in this journal, Sus purports to account for what have been identified as the ‘two miracles’ of general relativity—that the local symmetries of all dynamical equations for matter fields coincide, and the symmetries of the dynamical equations governing matter fields coincide locally with the symmetries of the metric field—by application of the familiar result that every symmetry of the action is also a symmetry of the resulting equations of motion. In this reply, we argue that, while (...) otherwise exemplary in its clarity, Sus’ paper fails in this regard, for it rests upon a illegitimate application of the aforementioned result. Thus, we conclude, pace Sus, that these two miracles persist in general relativity. (shrink)
Prominently, Norton argues against constructivism about spacetime theories, the doctrine that spatiotemporal structure in the dynamics only has derivative status. Among other things, he accuses Brown and Pooley's dynamical approach to special relativity of being merely half-way constructivist: setting up relativistic fields as presupposed in the dynamical approach to special relativity already requires spatiotemporal background structure. We first assess a recent solution proposal by Menon and then provide our very own defense of constructivism along two independent lines.
It has long been thought that observing distinctive traces of quantum gravity in a laboratory setting is effectively impossible, since gravity is so much weaker than all the other familiar forces in particle physics. But the quantum gravity phenomenology community today seeks to do the (effectively) impossible, using a challenging novel class of `tabletop' Gravitationally Induced Entanglement (GIE) experiments, surveyed here. The hypothesized outcomes of the GIE experiments are claimed by some (but disputed by others) to provide a `witness' of (...) the underlying quantum nature of gravity in the non-relativistic limit, using superpositions of Planck-mass bodies. We inspect what sort of achievement it would possibly be to perform GIE experiments, as proposed, ultimately arguing that the positive claim of witness is equivocal. Despite various sweeping arguments to the contrary in the vicinity of quantum information theory or given low-energy quantum gravity, whether or not one can claim to witness the quantum nature of the gravitational field in these experiments decisively depends on which out of two legitimate modelling paradigms one finds oneself in. However, by situating GIE experiments in a tradition of existing experiments aimed at making gravity interestingly quantum in the laboratory, we argue that, independently of witnessing or paradigms, there are powerful reasons to perform the experiments, and that their successful undertaking would indeed be a major advance in physics. (shrink)
General relativity cannot be formulated as a perturbatively renormalizable quantum field theory. An argument relying on the validity of the Bekenstein–Hawking entropy formula aims at dismissing gravity as non-renormalizable per se, against hopes that d-dimensional GR could turn out to have a non-perturbatively renormalizable d–dimensional quantum field theoretic formulation. In this note we discuss various forms of highly problematic semi-classical extrapolations assumed by both sides of the debate concerning what we call The Entropy Argument, and show that a large class (...) of dimensional reduction scenarios leads to the blow-up of Bekenstein–Hawking entropy. (shrink)