Timothy Williamson gives an original and provocative treatment of deep metaphysical questions about existence, contingency, and change, using the latest resources of quantified modal logic. Contrary to the widespread assumption that logic and metaphysics are disjoint, he argues that modal logic provides a structural core for metaphysics.
A textbook on modal logic, intended for readers already acquainted with the elements of formal logic, containing nearly 500 exercises. Brian F. Chellas provides a systematic introduction to the principal ideas and results in contemporary treatments of modality, including theorems on completeness and decidability. Illustrative chapters focus on deontic logic and conditionality. Modality is a rapidly expanding branch of logic, and familiarity with the subject is now regarded as a necessary part of every philosopher's (...) technical equipment. Chellas here offers an up-to-date and reliable guide essential for the student. (shrink)
Modal logic is one of philosophy’s many children. As a mature adult it has moved out of the parental home and is nowadays straying far from its parent. But the ties are still there: philosophy is important to modal logic, modal logic is important for philosophy. Or, at least, this is a thesis we try to defend in this chapter. Limitations of space have ruled out any attempt at writing a survey of all the work going on (...) in our field—a book would be needed for that. Instead, we have tried to select material that is of interest in its own right or exemplifies noteworthy features in interesting ways. Here are some themes that have guided us throughout the writing: • The back-and-forth between philosophy and modal logic. There has been a good deal of give-and-take in the past. Carnap tried to use his modal logic to throw light on old philosophical questions, thereby inspiring others to continue his work and still others to criticise it. He certainly provoked Quine, who in his turn provided—and continues to provide—a healthy challenge to modal logicians. And Kripke’s and David Lewis’s philosophies are connected, in interesting ways, with their modal logic. Analytic philosophy would have been a lot different without modal logic! • The interpretation problem. The problem of providing a certain modal logic with an intuitive interpretation should not be conflated with the problem of providing a formal system with a model-theoretic semantics. An intuitively appealing model-theoretic semantics may be an important step towards solving the interpretation problem, but only a step. One may compare this situation with that in probability theory, where definitions of concepts like ‘outcome space’ and ‘random variable’ are orthogonal to questions about “interpretations” of the concept of probability. • The value of formalisation. Modal logic sets standards of precision, which are a challenge to—and sometimes a model for—philosophy. Classical philosophical questions can be sharpened and seen from a new perspective when formulated in a framework of modal logic. On the other hand, representing old questions in a formal garb has its dangers, such as simplification and distortion. • Why modal logic rather than classical (first or higher order) logic? The idioms of modal logic—today there are many!—seem better to correspond to human ways of thinking than ordinary extensional logic. (Cf. Chomsky’s conjecture that the NP + VP pattern is wired into the human brain.) In his An Essay in Modal Logic (1951) von Wright distinguished between four kinds of modalities: alethic (modes of truth: necessity, possibility and impossibility), epistemic (modes of being known: known to be true, known to be false, undecided), deontic (modes of obligation: obligatory, permitted, forbidden) and existential (modes of existence: universality, existence, emptiness). The existential modalities are not usually counted as modalities, but the other three categories are exemplified in three sections into which this chapter is divided. Section 1 is devoted to alethic modal logic and reviews some main themes at the heart of philosophical modal logic. Sections 2 and 3 deal with topics in epistemic logic and deontic logic, respectively, and are meant to illustrate two different uses that modal logic or indeed any logic can have: it may be applied to already existing (non-logical) theory, or it can be used to develop new theory. (shrink)
Modal logic, developed as an extension of classical propositional logic and first-order quantification theory, integrates the notions of possibility and necessity and necessary implication. Arguments whose understanding depends on some fundamental knowledge of modal logic have always been important in philosophy of religion, metaphysics, and epistemology. Moreover, modal logic has become increasingly important with the use of the concept of "possible worlds" in these areas. Introductory Modal Logic fills the need for a basic text on (...) modal logic, accessible to students of elementary symbolic logic. Kenneth Konyndyk presents a natural deduction treatment of propositional modal logic and quantified modal logic, historical information about its development, and discussions of the philosophical issues raised by modal logic. Characterized by clear and concrete explanations, appropriate examples, and varied and challenging exercises, Introductory Modal Logic makes both modal logic and the possible-worlds metaphysics readily available to the introductory level student. (shrink)
We investigate the modal logic of stepwise removal of objects, both for its intrinsic interest as a logic of quantification without replacement, and as a pilot study to better understand the complexity jumps between dynamic epistemic logics of model transformations and logics of freely chosen graph changes that get registered in a growing memory. After introducing this logic (MLSR) and its corresponding removal modality, we analyze its expressive power and prove a bisimulation characterization theorem. We then (...) provide a complete Hillbert-style axiomatization for the logic of stepwise removal in a hybrid language enriched with nominals and public announcement operators. Next, we show that model-checking for MLSR is PSPACE-complete, while its satisfiability problem is undecidable. Lastly, we consider an issue of fine-structure: the expressive power gained by adding the stepwise removal modality to fragments of first-order logic. (shrink)
Modern modal logic originated as a branch of philosophical logic in which the concepts of necessity and possibility were investigated by means of a pair of dual operators that are added to a propositional or first-order language. The field owes much of its flavor and success to the introduction in the 1950s of the “possible-worlds” semantics in which the modal operators are interpreted via some “accessibility relation” connecting possible worlds. In subsequent years, modal logic has received attention (...) as an attractive approach towards formalizing such diverse notions as time, knowledge, or action. Nowadays, modal logics are applied in various disciplines, ranging from economics to linguistics and computer science. Consequently, there is by now a large variety of modal languages, with an even greater wealth of interpretations. For instance, many applications require a poly-modal framework consisting of a language with a family of modal operators and a semantics in which the corresponding accessibility relations are connected somehow. (shrink)
For a novice this book is a mathematically-oriented introduction to modal logic, the discipline within mathematical logic studying mathematical models of reasoning which involve various kinds of modal operators. It starts with very fundamental concepts and gradually proceeds to the front line of current research, introducing in full details the modern semantic and algebraic apparatus and covering practically all classical results in the field. It contains both numerous exercises and open problems, and presupposes only minimal knowledge in mathematics. (...) A specialist can use the book as a source of references. Results and methods of many directions in propositional modal logic, from completeness and duality to algorithmic problems, are collected and systematically presented in one volume. (shrink)
In _Modal Logic for Open Minds,_ Johan van Benthem provides an up-to-date introduction to the field of modal logic, outlining its major ideas and exploring the numerous ways in which various academic fields have adopted it. Van Benthem begins with the basic theories of modal logic, semantics, bisimulation, and axiomatics, and also covers more advanced topics, such as expressive power and computational complexity. The book then moves to a wide range of applications, including new developments in information (...) flow, intelligent agency, and games. Taken together, the chapters show modal logic at the crossroads of philosophy, mathematics, linguistics, computer science, and economics. Most of the chapters are followed by exercises, making this volume ideal for undergraduate and graduate students in philosophy, computer science, symbolic systems, cognitive science, and linguistics. (shrink)
Modern modal logic originated as a branch of philosophical logic in which the concepts of necessity and possibility were investigated by means of a pair of dual operators that are added to a propositional or first-order language. The field owes much of its flavor and success to the introduction in the 1950s of the “possible-worlds” semantics in which the modal operators are interpreted via some “accessibility relation” connecting possible worlds. In subsequent years, modal logic has received attention (...) as an attractive approach towards formalizing such diverse notions as time, knowledge, or action. Nowadays, modal logics are applied in various disciplines, ranging from economics to linguistics and computer science. Consequently, there is by now a large variety of modal languages, with an even greater wealth of interpretations. For instance, many applications require a poly-modal framework consisting of a language with a family of modal operators and a semantics in which the corresponding accessibility relations are connected somehow. (shrink)
Designed for use by philosophy students, this book provides an accessible, yet technically sound treatment of modal logic and its philosophical applications. Every effort has been made to simplify the presentation by using diagrams in place of more complex mathematical apparatus. These and other innovations provide philosophers with easy access to a rich variety of topics in modal logic, including a full coverage of quantified modal logic, non-rigid designators, definite descriptions, and the de-re de-dictio distinction. Discussion of (...) philosophical issues concerning the development of modal logic is woven into the text. The book uses natural deduction systems and also includes a diagram technique that extends the method of truth trees to modal logic. This feature provides a foundation for a novel method for showing completeness, one that is easy to extend to systems that include quantifiers. (shrink)
Formal learning theory formalizes the process of inferring a general result from examples, as in the case of inferring grammars from sentences when learning a language. In this work, we develop a general framework—the supervised learning game—to investigate the interaction between Teacher and Learner. In particular, our proposal highlights several interesting features of the agents: on the one hand, Learner may make mistakes in the learning process, and she may also ignore the potential relation between different hypotheses; on the other (...) hand, Teacher is able to correct Learner’s mistakes, eliminate potential mistakes and point out the facts ignored by Learner. To reason about strategies in this game, we develop a modal logic of supervised learning and study its properties. Broadly, this work takes a small step towards studying the interaction between graph games, logics and formal learning theory. (shrink)
We investigate an enrichment of the propositional modal language L with a "universal" modality ■ having semantics x ⊧ ■φ iff ∀y(y ⊧ φ), and a countable set of "names" - a special kind of propositional variables ranging over singleton sets of worlds. The obtained language ℒ $_{c}$ proves to have a great expressive power. It is equivalent with respect to modal definability to another enrichment ℒ(⍯) of ℒ, where ⍯ is an additional modality with the semantics x (...) ⊧ ⍯φ iff Vy(y ≠ x → y ⊧ φ). Model-theoretic characterizations of modal definability in these languages are obtained. Further we consider deductive systems in ℒ $_{c}$ . Strong completeness of the normal ℒ $_{c}$ logics is proved with respect to models in which all worlds are named. Every ℒ $_{c}$ -logic axiomatized by formulae containing only names (but not propositional variables) is proved to be strongly frame-complete. Problems concerning transfer of properties ([in]completeness, filtration, finite model property etc.) from ℒ to ℒ $_{c}$ are discussed. Finally, further perspectives for names in multimodal environment are briefly sketched. (shrink)
This long-awaited book replaces Hughes and Cresswell's two classic studies of modal logic: _An Introduction to Modal Logic_ and _A Companion to Modal Logic_. _A New Introduction to Modal Logic_ is an entirely new work, completely re-written by the authors. They have incorporated all the new developments that have taken place since 1968 in both modal propositional logic and modal predicate logic, without sacrificing tha clarity of exposition and approachability that were essential features of their earlier works. (...) The book takes readers from the most basic systems of modal propositional logic right up to systems of modal predicate with identity. It covers both technical developments such as completeness and incompleteness, and finite and infinite models, and their philosophical applications, especially in the area of modal predicate logic. (shrink)
In _Modal Logic for Open Minds,_ Johan van Benthem provides an up-to-date introduction to the field of modal logic, outlining its major ideas and exploring the numerous ways in which various academic fields have adopted it. Van Benthem begins with the basic theories of modal logic, semantics, bisimulation, and axiomatics, and also covers more advanced topics, such as expressive power and computational complexity. The book then moves to a wide range of applications, including new developments in information (...) flow, intelligent agency, and games. Taken together, the chapters show modal logic at the crossroads of philosophy, mathematics, linguistics, computer science, and economics. Most of the chapters are followed by exercises, making this volume ideal for undergraduate and graduate students in philosophy, computer science, symbolic systems, cognitive science, and linguistics. (shrink)
In Part 1 the reader is introduced to some standard systems of modal logic and encouraged through a series of exercises to become proficient in manipulating these logics. The emphasis is on possible world semantics for modal logics and the semantic emphasis is carried into the formal method, Jeffrey-style truth-trees. Standard truth-trees are extended in a simple and transparent way to take possible worlds into account. Part 2 systematically explores the applications of modal logic to philosophical issues such (...) as truth, time, processes, knowledge and belief, obligation and permission. Accessible, authoritative, and assured, Modal Logics and Philosophy requires no more background than the completion of a standard introductory logic course. It will be welcomed not only by students looking for a bridge between introductory logic texts and the high-level technical literature but as a guide to, and exploration of, work at the forefront of logic and philosophy. (shrink)
Designed for use by philosophy students, this 2006 book provides an accessible, yet technically sound treatment of modal logic and its philosophical applications. Every effort has been made to simplify the presentation by using diagrams in place of more complex mathematical apparatus. These and other innovations provide philosophers with easy access to a rich variety of topics in modal logic, including a full coverage of quantified modal logic, non-rigid designators, definite descriptions, and the de-re de-dictio distinction. Discussion (...) of philosophical issues concerning the development of modal logic is woven into the text. The book uses natural deduction systems and also includes a diagram technique that extends the method of truth trees to modal logic. This feature provides a foundation for a novel method for showing completeness, one that is easy to extend to systems that include quantifiers. (shrink)
A Short Introduction to Modal Logic presents both semantic and syntactic features of the subject and illustrates them by detailed analyses of the three best-known modal systems S5, S4 and T. The book concentrates on the logical aspects of ...
This essay examines the philosophical significance of $\Omega$-logic in Zermelo-Fraenkel set theory with choice (ZFC). The duality between coalgebra and algebra permits Boolean-valued algebraic models of ZFC to be interpreted as coalgebras. The modal profile of $\Omega$-logical validity can then be countenanced within a coalgebraic logic, and $\Omega$-logical validity can be defined via deterministic automata. I argue that the philosophical significance of the foregoing is two-fold. First, because the epistemic and modal profiles of $\Omega$-logical validity correspond to those (...) of second-order logical consequence, $\Omega$-logical validity is genuinely logical, and thus vindicates a neo-logicist conception of mathematical truth in the set-theoretic multiverse. Second, the foregoing provides a modal-computational account of the interpretation of mathematical vocabulary, adducing in favor of a realist conception of the cumulative hierarchy of sets. (shrink)
This book treats modal logic as a theory, with several subtheories, such as completeness theory, correspondence theory, duality theory and transfer theory and is intended as a course in modal logic for students who have had prior contact with modal logic and who wish to study it more deeply. It presupposes training in mathematical or logic. Very little specific knowledge is presupposed, most results which are needed are proved in this book.
This book on modal logic is especially designed for philosophy students. It provides an accessible yet technically sound treatment of modal logic and its philosophical applications. Every effort is made to simplify the presentation by using diagrams instead of more complex mathematical apparatus. These and other innovations provide philosophers with easy access to a rich variety of topics in modal logic, including a full coverage of quantified modal logic, non-rigid designators, definite descriptions, and the de-re de-dicto (...) distinction. Discussion of philosophical issues concerning the development of modal logic is woven into the text. The book uses natural deduction systems, which are widely regarded as the easiest to teach and use. It also includes a diagram technique that extends the method of truth trees to modal logic. This provides a foundation for a novel method for showing completeness that is easy to extend to quantifiers. This second edition contains a new chapter on logics of conditionals, an updated and expanded bibliography, and is updated throughout. (shrink)
This is identical with the first edition (see 21: 2716) except for the addition of a Supplement containing 5 previously published articles and the bringing of the bibliography (now 73 items) up to date. The 5 added articles present clarifications or modifications of views expressed in the first edition. (PsycINFO Database Record (c) 2009 APA, all rights reserved).
Modal logics, originally conceived in philosophy, have recently found many applications in computer science, artificial intelligence, the foundations of mathematics, linguistics and other disciplines. Celebrated for their good computational behaviour, modal logics are used as effective formalisms for talking about time, space, knowledge, beliefs, actions, obligations, provability, etc. However, the nice computational properties can drastically change if we combine some of these formalisms into a many-dimensional system, say, to reason about knowledge bases developing in time or moving objects. To study (...) the computational behaviour of many-dimensional modal logics is the main aim of this book. On the one hand, it is concerned with providing a solid mathematical foundation for this discipline, while on the other hand, it shows that many seemingly different applied many-dimensional systems (e.g., multi-agent systems, description logics with epistemic, temporal and dynamic operators, spatio-temporal logics, etc.) fit in perfectly with this theoretical framework, and so their computational behaviour can be analyzed using the developed machinery. We start with concrete examples of applied one- and many-dimensional modal logics such as temporal, epistemic, dynamic, description, spatial logics, and various combinations of these. Then we develop a mathematical theory for handling a spectrum of 'abstract' combinations of modal logics - fusions and products of modal logics, fragments of first-order modal and temporal logics - focusing on three major problems: decidability, axiomatizability, and computational complexity. Besides the standard methods of modal logic, the technical toolkit includes the method of quasimodels, mosaics, tilings, reductions to monadic second-order logic, algebraic logic techniques. Finally, we apply the developed machinery and obtained results to three case studies from the field of knowledge representation and reasoning: temporal epistemic logics for reasoning about multi-agent systems, modalized description logics for dynamic ontologies, and spatio-temporal logics. The genre of the book can be defined as a research monograph. It brings the reader to the front line of current research in the field by showing both recent achievements and directions of future investigations (in particular, multiple open problems). On the other hand, well-known results from modal and first-order logic are formulated without proofs and supplied with references to accessible sources. The intended audience of this book is logicians as well as those researchers who use logic in computer science and artificial intelligence. More specific application areas are, e.g., knowledge representation and reasoning, in particular, terminological, temporal and spatial reasoning, or reasoning about agents. And we also believe that researchers from certain other disciplines, say, temporal and spatial databases or geographical information systems, will benefit from this book as well. Key Features: Integrated approach to modern modal and temporal logics and their applications in artificial intelligence and computer science Written by internationally leading researchers in the field of pure and applied logic Combines mathematical theory of modal logic and applications in artificial intelligence and computer science Numerous open problems for further research Well illustrated with pictures and tables. (shrink)
Modal sentences of the form "every F might be G" and "some F must be G" have a threefold ambiguity. in addition to the familiar readings "de dicto" and "de re", there is a third reading on which they are examples of the "plural de re": they attribute a modal property to the F's plurally in a way that cannot in general be reduced to an attribution of modal properties to the individual F's. The plural "de re" readings of modal (...) sentences cannot be captured within standard quantified modal logic. I consider various strategies for extending standard quantified modal logic so as to provide analyses of the readings in question. I argue that the ambiguity in question is associated with the scope of the general term 'F'; and that plural quantifiers can be introduced for purposes of representing the scope of a general term. Moreover, plural quantifiers provide the only fully adequate solution that keeps within the framework of quantified modal logic. (shrink)
The modal logic of Gödel sentences, termed as GS, is introduced to analyze the logical properties of 'true but unprovable' sentences in formal arithmetic. The logic GS is, in a sense, dual to Grzegorczyk's Logic, where modality can be interpreted as 'true and provable'. As we show, GS and Grzegorczyk's Logic are, in fact, mutually embeddable. We prove Kripke completeness and arithmetical completeness for GS. GS is also an extended system of the logic of (...) 'Essence and Accident' proposed by Marcos (Bull Sect Log 34(1):43-56, 2005). We also clarify the relationships between GS and the provability logic GL and between GS and Intuitionistic Propositional Logic. (shrink)
The present monograph is a slightly revised version of my Habilitations schrift Proof-theoretic Aspects of Intensional and Non-Classical Logics, successfully defended at Leipzig University, November 1997. It collects work on proof systems for modal and constructive logics I have done over the last few years. The main concern is display logic, a certain refinement of Gentzen's sequent calculus developed by Nuel D. Belnap. This book is far from offering a comprehensive presentation of generalized sequent systems for modal logics broadly (...) conceived. The proof-theory of non-classical logics is a rapidly developing field, and even the generalizations of the ordinary notion of sequent listed in Chapter 1 can hardly be presented in great detail within a single volume. In addition to further investigating the various approaches toward generalized Gentzen systems, it is important to compare them and to discuss their relative advantages and disadvantages. An initial attempt at bringing together work on different kinds of proof systems for modal logics has been made in [188]. Another step in the same direction is [196]. Since Chapter 1 contains introductory considerations and, moreover, every remaining chapter begins with some surveying or summarizing remarks, in this preface I shall only emphasize a relation to philosophy that is important to me, register the sources of papers that have entered this book in some form or another, and acknowledge advice and support. (shrink)
This volume succeeds the same authors' well-known An Introduction to Modal Logic and A Companion to Modal Logic. We designate the three books and their authors NIML, IML, CML and H&C respectively. Sadly, George Hughes died partway through the writing of NIML.
In Bayesian belief revision a Bayesian agent revises his prior belief by conditionalizing the prior on some evidence using Bayes’ rule. We define a hierarchy of modal logics that capture the logical features of Bayesian belief revision. Elements in the hierarchy are distinguished by the cardinality of the set of elementary propositions on which the agent’s prior is defined. Inclusions among the modal logics in the hierarchy are determined. By linking the modal logics in the hierarchy to the strongest modal (...) companion of Medvedev’s logic of finite problems it is shown that the modal logic of belief revision determined by probabilities on a finite set of elementary propositions is not finitely axiomatizable. (shrink)
The formula A (it is noncontingent whether A) is true at a point in a Kripke model just in case all points accessible to that point agree on the truth-value of A. We can think of -based modal logic as a special case of what we call the general modal logic of agreement, interpreted with the aid of models supporting a ternary relation, S, say, with OA (which we write instead of A to emphasize the generalization involved) true (...) at a point w just in case for all points x, y, with Swxy, x and y agree on the truth-value of A. The noncontingency interpretation is the special case in which Swxy if and only if Rwx and Rwy, where R is a traditional binary accessibility relation. Another application, related to work of Lewis and von Kutschera, allows us to think of OA as saying that A is entirely about a certain subject matter. (shrink)
In this paper I argue, that if it is metaphysically possible for it to have been the case that nothing existed, then it follows that the right modal logic cannot extend D, ruling out popular modal logics S4 and S5. I provisionally defend the claim that it is possible for nothing to have existed. I then consider the various ways of resisting the conclusion that the right modal logic is weaker than D.
The question, "Which modal logic is the right one for logical necessity?," divides into two questions, one about model-theoretic validity, the other about proof-theoretic demonstrability. The arguments of Halldén and others that the right validity argument is S5, and the right demonstrability logic includes S4, are reviewed, and certain common objections are argued to be fallacious. A new argument, based on work of Supecki and Bryll, is presented for the claim that the right demonstrability logic must be (...) contained in S5, and a more speculative argument for the claim that it does not include S4.2 is also presented. (shrink)
We investigate properties of propositional modal logic over the classof finite structures. In particular, we show that certain knownpreservation theorems remain true over this class. We prove that aclass of finite models is defined by a first-order sentence and closedunder bisimulations if and only if it is definable by a modal formula.We also prove that a class of finite models defined by a modal formulais closed under extensions if and only if it is defined by a -modal formula.
We consider some modal languages with a modal operator $D$ whose semantics is based on the relation of inequality. Basic logical properties such as definability, expressive power and completeness are studied. Also, some connections with a number of other recent proposals to extend the standard modal language are pointed at.
Various four- and three-valued modal propositional logics are studied. The basic systems are modal extensions BK and BS4 of Belnap and Dunn's four-valued logic of firstdegree entailment. Three-valued extensions of BK and BS4 are considered as well. These logics are introduced semantically by means of relational models with two distinct evaluation relations, one for verification and the other for falsification. Axiom systems are defined and shown to be sound and complete with respect to the relational semantics and with respect (...) to twist structures over modal algebras. Sound and complete tableau calculi are presented as well. Moreover, a number of constructive non-modal logics with strong negation are faithfully embedded into BS4, into its three-valued extension B3S4, or into temporal BS4, BtS4. These logics include David Nelson's three-valued logic N3, the four-valued logic N4 bottom, the connexive logic C, and several extensions of bi-intuitionistic logic by strong negation. (shrink)
Modal logic provides an elegant way to understand the notion of potential infinity. This raises the question of what the right modal logic is for reasoning about potential infinity. In this article I identify a choice point in determining the right modal logic: Can a potentially infinite collection ever be expanded in two mutually incompatible ways? If not, then the possible expansions are convergent; if so, then the possible expansions are branching. When possible expansions are convergent, the (...) right modal logic is S4.2, and a mirroring theorem due to Linnebo allows for a natural potentialist interpretation of mathematical discourse. When the possible expansions are branching, the right modal logic is S4. However, the usual box and diamond do not suffice to express everything the potentialist wants to express. I argue that the potentialist also needs an operator expressing that something will eventually happen in every possible expansion. I prove that the result of adding this operator to S4 makes the set of validities Pi-1-1 hard. This result makes it unlikely that there is any natural translation of ordinary mathematical discourse into the potentialist framework in the context of branching possibilities. (shrink)
We analyze the precise modal commitments of several natural varieties of set-theoretic potentialism, using tools we develop for a general model-theoretic account of potentialism, building on those of Hamkins, Leibman and Löwe [14], including the use of buttons, switches, dials and ratchets. Among the potentialist conceptions we consider are: rank potentialism, Grothendieck–Zermelo potentialism, transitive-set potentialism, forcing potentialism, countable-transitive-model potentialism, countable-model potentialism, and others. In each case, we identify lower bounds for the modal validities, which are generally either S4.2 or S4.3, (...) and an upper bound of S5, proving in each case that these bounds are optimal. The validity of S5 in a world is a potentialist maximality principle, an interesting set-theoretic principle of its own. The results can be viewed as providing an analysis of the modal commitments of the various set-theoretic multiverse conceptions corresponding to each potentialist account. (shrink)
The first edition, published by Acumen in 2000, became a prescribed textbook on modal logic courses. The second edition has been fully revised in response to readers' suggestions, including two new chapters on conditional logic, which was not covered in the first edition. "Modal Logics and Philosophy" is a fully comprehensive introduction to modal logics and their application suitable for course use. Unlike most modal logic textbooks, which are both forbidding mathematically and short on philosophical discussion, "Modal (...) Logics and Philosophy" places its emphasis firmly on showing how useful modal logic can be as a tool for formal philosophical analysis. In part 1 of the book, the reader is introduced to some standard systems of modal logic and encouraged through a series of exercises to become proficient in manipulating these logics. The emphasis is on possible world semantics for modal logics and the semantic emphasis is carried into the formal method, Jeffrey-style truth-trees. Standard truth-trees are extended in a simple and transparent way to take possible worlds into account. Part 2 systematically explores the applications of modal logic to philosophical issues such as truth, time, processes, knowledge and belief, obligation and permission. (shrink)
This text aims to convey some of the interest and charm of modal logic, and to put a reader new to the subject in a position to have an informed opinion as to its applicability to each of several areas of philosophical concern in which the merits of a modal approach' have been controversial. he main focus, for these purposes, is on normal modal logics, though some attention is given to the non-normal side of the picture.
Standard reasoning about Kripke semantics for modal logic is almost always based on a background framework of classical logic. Can proofs for familiar definability theorems be carried out using a nonclassical substructural logic as the metatheory? This article presents a semantics for positive substructural modal logic and studies the connection between frame conditions and formulas, via definability theorems. The novelty is that all the proofs are carried out with a noncontractive logic in the background. This (...) sheds light on which modal principles are invariant under changes of metalogic, and provides evidence for the general viability of nonclassical mathematics. (shrink)
In Bayesian belief revision a Bayesian agent revises his prior belief by conditionalizing the prior on some evidence using Bayes’ rule. We define a hierarchy of modal logics that capture the logical features of Bayesian belief revision. Elements in the hierarchy are distinguished by the cardinality of the set of elementary propositions on which the agent’s prior is defined. Inclusions among the modal logics in the hierarchy are determined. By linking the modal logics in the hierarchy to the strongest modal (...) companion of Medvedev’s logic of finite problems it is shown that the modal logic of belief revision determined by probabilities on a finite set of elementary propositions is not finitely axiomatizable. (shrink)
INTENSIONAL LOGIC §1. Natural Language and Intensional Logic When we speak of a theory of meaning for a natural language such as English, we have in mind an ...
CHAPTER 1. INTENSIONAL LOGIC §1. Natural Language and Intensional Logic When we speak of a theory of meaning for a natural language such as English, ...
The Handbook of Modal Logic contains 20 articles, which collectively introduce contemporary modal logic, survey current research, and indicate the way in which the field is developing. The articles survey the field from a wide variety of perspectives: the underling theory is explored in depth, modern computational approaches are treated, and six major applications areas of modal logic (in Mathematics, Computer Science, Artificial Intelligence, Linguistics, Game Theory, and Philosophy) are surveyed. The book contains both well-written expository articles, (...) suitable for beginners approaching the subject for the first time, and advanced articles, which will help those already familiar with the field to deepen their expertise. Please visit: http://people.uleth.ca/~woods/RedSeriesPromo_WP/PubSLPR.html - Compact modal logic reference - Computational approaches fully discussed - Contemporary applications of modal logic covered in depth. (shrink)