11 found
Order:
  1. The principle of continuity and the 'paradox'of Leibnizian mathematics.Michel Serfati - 2010 - In Marcelo Dascal (ed.), The Practice of Reason: Leibniz and His Controversies. John Benjamins. pp. 1--32.
  2. Descartes and the establishment of symbolic mathematical writing.Michel Serfati - 1998 - Revue d'Histoire des Sciences 51 (2):237-290.
     
    Export citation  
     
    Bookmark  
  3.  11
    Descartes et la constitution de l'écriture symbolique mathématique/Descartes and the establishment of symbolic mathematical writing.Michel Serfati - 1998 - Revue d'Histoire des Sciences 51 (2):237-290.
  4.  1
    Leibniz and the invention of mathematical transcendence.Michel Serfati - 2018 - Stuttgart: Franz Steiner Verlag.
    The invention of mathematical transcendence in the seventeenth century is linked to Leibniz, who always claimed it to be his own creation. However, Descartes had created a completely new symbolic frame in which one considers plane curves, which was a real upheaval. Leibniz initially appreciated this Cartesian frame. Although, as we see in the book, during his research he was confronted with inexpressible contexts he then called 'transcendent'. The development of a concept of mathematical transcendence is at the core of (...)
    Direct download  
     
    Export citation  
     
    Bookmark  
  5. Mathematics and symbolic thought in Leibniz.Michel Serfati - 2001 - Revue d'Histoire des Sciences 54 (2):165-222.
  6.  11
    Mathématiques et pensée symbolique chez Leibniz / Mathematics and symbolic thought in Leibniz.Michel Serfati - 2001 - Revue d'Histoire des Sciences 54 (2):165-222.
    No categories
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark  
  7.  2
    Order in Descartes, Harmony in Leibniz: Two Regulative Principles of Mathematical Analysis.Michel Serfati - 2013 - Studia Leibnitiana 45 (1):59-96.
    This article is devoted to some of the dominant positions in the philosophy of mathematics, in Descartes and in Leibniz, and to their consequences drawn by these authors in mathematical analysis. I shall treat of Descartes’ epistemological conceptions of analysis and of the primacy of order, both of which are excellently exposited in the _Rules for the direction of the mind_ and of various mathematical devices which he developed later, from the time of the _Cogitationes privatae_ until the _Géométrie_.
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  8.  49
    Regulae et mathématiques.Michel Serfati - 1994 - Theoria 9 (2):61-108.
    L’histoire du texte des Régles pour la Direction de l’Esprit (Regulae) de Descartes est un peu singulière: non publié du vivant de Descartes, il n’a paru qu’en 1701, dans les Opera Posthuma d’Amsterdam. De façon plus significative, et contrairement aux autres traités cartésiens perdus, ce texte secret n’est jamais explicitement evoqué par Descartes, fût-ce au détour d’une correspondance. Par leur étroite dépendance vis à vis des mathématiques, les Regulae sont cependant un texte majeur, constitutives de la pensée de leur auteur (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  9.  27
    Symbolic Inventiveness and “Irrationalist” Practices in Leibniz's Mathematics.Michel Serfati - 2008 - In Marcelo Dascal (ed.), Leibniz: What Kind of Rationalist? Springer. pp. 125--139.
  10.  13
    Chikara Sasaki. Descartes’s Mathematical Thought. xiv + 496 pp., bibl., indexes. Dordrecht/Boston/London: Kluwer Academic Publishers, 2003. $158, £144. [REVIEW]Michel Serfati - 2005 - Isis 96 (4):657-658.
    No categories
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  11.  12
    « Pour Descartes » : Mathématiques et physique cartésiennes. Introduction/ For Descartes » : Cartesian mathematics and physics. Introduction. [REVIEW]Michel Serfati - 1998 - Revue d'Histoire des Sciences 51 (2):171-182.
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark