Let C be a small Barr-exact category, Reg the category of all regular functors from C to the category of small sets. A form of M. Barr's full embedding theorem states that the evaluation functor e : C →[Reg, Set ] is full and faithful. We prove that the essential image of e consists of the functors that preserve all small products and filtered colimits. The concept of κ-Barr-exact category is introduced, for κ any infinite regular cardinal, and the natural (...) generalization to κ-Barr-exact categories of the above result is proved. The treatment combines methods of model theory and category theory. Some applications to module categories are given. (shrink)
We use a fundamental theorem of Vaught, called the covering theorem in [V] (cf. theorem 0.1 below) as well as a generalization of it (cf. Theorem $0.1^\ast$ below) to derive several known and a few new results related to the logic $L_{\omega_1\omega}$. Among others, we prove that if every countable model in a $PC_{\omega_1\omega}$ class has only countably many automorphisms, then the class has either $\leq\aleph_0$ or exactly $2^{\aleph_0}$ nonisomorphic countable members (cf. Theorem $4.3^\ast$) and that the class of countable (...) saturated structures of a sufficiently large countable similarity type is not $PC_{\omega_1\omega}$ among countable structures (cf. Theorem 5.2). We also give a simple proof of the Lachlan-Sacks theorem on bounds of Morley ranks ($\s 7$). (shrink)
Using the framework of categorical logic, this paper analyzes and streamlines Gabbay's semantical proof of the Craig interpolation theorem for intuitionistic predicate logic. In the process, an apparently new and interesting fact about the relation of coherent and intuitionistic logic is found.