The “wisdom of the crowd” phenomenon refers to the finding that the aggregate of a set of proposed solutions from a group of individuals performs better than the majority of individual solutions. Most often, wisdom of the crowd effects have been investigated for problems that require single numerical estimates. We investigate whether the effect can also be observed for problems where the answer requires the coordination of multiple pieces of information. We focus on combinatorial problems such as the planar Euclidean (...) traveling salesperson problem, minimum spanning tree problem, and a spanning tree memory task. We develop aggregation methods that combine common solution fragments into a global solution and demonstrate that these aggregate solutions outperform the majority of individual solutions. These case studies suggest that the wisdom of the crowd phenomenon might be broadly applicable to problem-solving and decision-making situations that go beyond the estimation of single numbers. (shrink)
We apply a cognitive modeling approach to the problem of measuring expertise on rank ordering problems. In these problems, people must order a set of items in terms of a given criterion (e.g., ordering American holidays through the calendar year). Using a cognitive model of behavior on this problem that allows for individual differences in knowledge, we are able to infer people's expertise directly from the rankings they provide. We show that our model-based measure of expertise outperforms self-report measures, taken (...) both before and after completing the ordering of items, in terms of correlation with the actual accuracy of the answers. These results apply to six general knowledge tasks, like ordering American holidays, and two prediction tasks, involving sporting and television competitions. Based on these results, we discuss the potential and limitations of using cognitive models in assessing expertise. (shrink)
For decisions between many alternatives, the benchmark result is Hick's Law: that response time increases log-linearly with the number of choice alternatives. Even when Hick's Law is observed for response times, divergent results have been observed for error rates—sometimes error rates increase with the number of choice alternatives, and sometimes they are constant. We provide evidence from two experiments that error rates are mostly independent of the number of choice alternatives, unless context effects induce participants to trade speed for accuracy (...) across conditions. Error rate data have previously been used to discriminate between competing theoretical accounts of Hick's Law, and our results question the validity of those conclusions. We show that a previously dismissed optimal observer model might provide a parsimonious account of both response time and error rate data. The model suggests that people approximate Bayesian inference in multi-alternative choice, except for some perceptual limitations. (shrink)
Statistical topic models provide a general data - driven framework for automated discovery of high-level knowledge from large collections of text documents. Although topic models can potentially discover a broad range of themes in a data set, the interpretability of the learned topics is not always ideal. Human-defined concepts, however, tend to be semantically richer due to careful selection of words that define the concepts, but they may not span the themes in a data set exhaustively. In this study, we (...) review a new probabilistic framework for combining a hierarchy of human-defined semantic concepts with a statistical topic model to seek the best of both worlds. Results indicate that this combination leads to systematic improvements in generalization performance as well as enabling new techniques for inferring and visualizing the content of a document. (shrink)