Results for 'Loop quantum gravity'

976 found
Order:
  1.  71
    Loop Quantum Gravity: A New Threat to Humeanism? Part I: The Problem of Spacetime.Vera Matarese - 2019 - Foundations of Physics 49 (3):232-259.
    In this paper, I discuss whether the results of loop quantum gravity (LQG) constitute a fatal blow to Humeanism. There is at least a prima facie reason for believing so: while Humeanism regards spatiotemporal relations as fundamental, LQG describes the fundamental layer of our reality in terms of spin networks, which are not in spacetime. However, the question should be tackled more carefully. After explaining the importance of the debate on the tenability of Humeanism in light of (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  2.  55
    Quaternion-Loop Quantum Gravity.M. D. Maia, S. S. E. Almeida Silva & F. S. Carvalho - 2009 - Foundations of Physics 39 (11):1273-1279.
    It is shown that the Riemannian curvature of the 3-dimensional hypersurfaces in space-time, described by the Wilson loop integral, can be represented by a quaternion quantum operator induced by the SU(2) gauge potential, thus providing a justification for quaternion quantum gravity at the Tev energy scale.
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark  
  3. String Theory, Loop Quantum Gravity and Eternalism.Baptiste Le Bihan - 2020 - European Journal for Philosophy of Science 10:17.
    Eternalism, the view that what we regard locally as being located in the past, the present and the future equally exists, is the best ontological account of temporal existence in line with special and general relativity. However, special and general relativity are not fundamental theories and several research programs aim at finding a more fundamental theory of quantum gravity weaving together all we know from relativistic physics and quantum physics. Interestingly, some of these approaches assert that time (...)
    Direct download (6 more)  
     
    Export citation  
     
    Bookmark   10 citations  
  4.  14
    Loop quantum gravity in the light of neo-Kantian philosophy.Luigi Laino - 2021 - Kant E-Prints 16 (2):231-255.
    The paper surveys the possibility of keeping a neo-Kantian approach in the face of Loop Quantum Gravity. Together with a preliminary analysis of Cassirer’s re-interpretation of Kantian philosophy that allowed him to harmonize the a priori cognitions with the theory of relativity and quantum mechanics, it will focus on the distinction between constitutive and regulativea priori. In this way, the paper will suggest that despite Rovelli’s refutation of Kant’s interpretation of space and time, he seems, at (...)
    Direct download  
     
    Export citation  
     
    Bookmark  
  5.  27
    Space and Time in Loop Quantum Gravity.Carlo Rovelli - unknown
    Quantum gravity is expected to require modifications of the notions of space and time. I discuss and clarify how this happens in Loop Quantum Gravity.
    No categories
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  6.  75
    The Metaphysical Challenge of Loop Quantum Gravity.Martin Calamari - 2021 - Studies in History and Philosophy of Science Part A 86 (C):68-83.
  7. Higher Spin AdS.Cft Correspondence & Quantum Gravity Aspects Of Ads/cft - 2016 - In Piero Nicolini, Matthias Kaminski, Jonas Mureika & Marcus Bleicher (eds.), 1st Karl Schwarzschild Meeting on Gravitational Physics. Cham: Imprint: Springer.
    No categories
     
    Export citation  
     
    Bookmark  
  8.  28
    Is Knowledge of Physical Reality Still Kantian? Some Remarks About the Transcendental Character of Loop Quantum Gravity.Luigi Laino - 2018 - Foundations of Physics 48 (7):783-802.
    In the following paper, the author will try to test the meaning of the transcendental approach in respect of the inner changes implied by the idea of quantum gravity. He will firstly describe the basic methodological Kant’s aim, viz. the grounding of a meta-science of physics as the a priori corpus of physical knowledge. After that, he will take into account the problematic physical and philosophical relationship between the theory of relativity and the quantum mechanics; in showing (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  9.  74
    Quantum Gravity.Carlo Rovelli - 2007 - Cambridge University Press.
    Quantum gravity poses the problem of merging quantum mechanics and general relativity, the two great conceptual revolutions in the physics of the twentieth century. The loop and spinfoam approach, presented in this book, is one of the leading research programs in the field. The first part of the book discusses the reformulation of the basis of classical and quantum Hamiltonian physics required by general relativity. The second part covers the basic technical research directions. Appendices include (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   173 citations  
  10.  5
    Quantum Gravity.Claus Kiefer - 2004 - Oxford University Press UK.
    The search for a quantum theory of the gravitational field is one of the great open problems in theoretical physics. This book presents a self-contained discussion of the concepts, methods and applications that can be expected in such a theory. The two main approaches to its construction - the direct quantisation of Einstein's general theory of relativity and string theory - are covered. Whereas the first attempts to construct a viable theory for the gravitational field alone, string theory assumes (...)
    Direct download  
     
    Export citation  
     
    Bookmark   40 citations  
  11. Spacetime Emergence in Quantum Gravity: Functionalism and the Hard Problem.Baptiste Le Bihan - 2021 - Synthese 199 (2):371–393.
    Spacetime functionalism is the view that spacetime is a functional structure implemented by a more fundamental ontology. Lam and Wüthrich have recently argued that spacetime functionalism helps to solve the epistemological problem of empirical coherence in quantum gravity and suggested that it also (dis)solves the hard problem of spacetime, namely the problem of offering a picture consistent with the emergence of spacetime from a non-spatio-temporal structure. First, I will deny that spacetime functionalism solves the hard problem by showing (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   19 citations  
  12.  35
    Quantum Gravity as a Fermi Liquid.Stephon H. S. Alexander & Gianluca Calcagni - 2008 - Foundations of Physics 38 (12):1148-1184.
    We present a reformulation of loop quantum gravity with a cosmological constant and no matter as a Fermi-liquid theory. When the topological sector is deformed and large gauge symmetry is broken, we show that the Chern–Simons state reduces to Jacobson’s degenerate sector describing 1+1 dimensional propagating fermions with nonlocal interactions. The Hamiltonian admits a dual description which we realize in the simple BCS model of superconductivity. On one hand, Cooper pairs are interpreted as wormhole correlations at the (...)
    Direct download (6 more)  
     
    Export citation  
     
    Bookmark  
  13. Loop quantum ontology: spin-networks and spacetime.Joshua Norton - unknown
    The ontological issues at stake given the theory of loop quantum gravity include the status of spacetime, the nature and reality of spin-networks, the relationship of classical spacetime to issues of causation and the status of the abstract-concrete distinction. I this paper I argue that, while spacetime seems to disappear, the spirit of substantival spacetime lives on under certain interpretations of the theory. Moreover, in order for there to be physical spin-networks, and not merely mathematical artifacts, I (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  14.  89
    Quantum gravity and the nature of space and time.Keizo Matsubara - 2017 - Philosophy Compass 12 (3):e12405.
    This is a nontechnical overview of how various approaches to quantum gravity suggest modifications to the way we conceptualize space and time. A theory of quantum gravity is needed to reconcile quantum physics with general relativity, our best theory for gravity. The most popular approaches to quantum gravity are string theory and loop quantum gravity. So far, no approach has been empirically successful, and there is no commonly accepted theory. (...)
    No categories
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   9 citations  
  15. Have we Lost Spacetime on the Way? Narrowing the Gap between General Relativity and Quantum Gravity.Baptiste Le Bihan & Niels Siegbert Linnemann - 2019 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 65 (C):112-121.
    Important features of space and time are taken to be missing in quantum gravity, allegedly requiring an explanation of the emergence of spacetime from non-spatio-temporal theories. In this paper, we argue that the explanatory gap between general relativity and non-spatio- temporal quantum gravity theories might significantly be reduced with two moves. First, we point out that spacetime is already partially missing in the context of general relativity when understood from a dynamical perspective. Second, we argue that (...)
    Direct download (7 more)  
     
    Export citation  
     
    Bookmark   26 citations  
  16.  46
    Quantum Gravity from General Relativity.Christian Wuthrich - 2022 - In Eleanor Knox & Alastair Wilson (eds.), The Routledge Companion to Philosophy of Physics. London, UK: Routledge.
    Although general relativity is a predictively successful theory, it treats matter as classical rather than as quantum. For this reason, it will have to be replaced by a more fundamental quantum theory of gravity. Attempts to formulate a quantum theory of gravity suggest that such a theory may have radical consequences for the nature, and indeed the fate, of spacetime. The present article articulates what this problem of spacetime is and traces it three approaches to (...)
    No categories
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  17. Quantum gravity: Has spacetime quantum properties?Reiner Hedrich - unknown
    The conceptual incompatibility between General Relativity and Quantum Mechanics is generally seen as a sufficient motivation for the development of a theory of Quantum Gravity. If - so a typical argumentation - Quantum Mechanics gives a universally valid basis for the description of the dynamical behavior of all natural systems, then the gravitational field should have quantum properties, like all other fundamental interaction fields. And, if General Relativity can be seen as an adequate description of (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   4 citations  
  18.  89
    Quantum gravity: Motivations and alternatives.Reiner Hedrich - unknown
    The mutual conceptual incompatibility between General Relativity and Quantum Mechanics / Quantum Field Theory is generally seen as the most essential motivation for the development of a theory of Quantum Gravity. It leads to the insight that, if gravity is a fundamental interaction and Quantum Mechanics is universally valid, the gravitational field will have to be quantized, not at least because of the inconsistency of semi-classical theories of gravity. The objective of a theory (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  19.  28
    Empirically Incoherent Quantum Gravity.Joshua Norton - 2021 - Theoria 87 (6):1349-1379.
    It is argued that certain quantum theories of gravity — string theory, loop quantum gravity, non-commutative field theory — do not include spacetime as part of their fundamental ontology. There is a concern in the literature that theories of this kind are physically opaque and empirically incoherent. In this paper, I clarify and amend Huggett and Wüthrich’s argument against these claims. Whereas the content of this paper centres on the disappearance and re-emergence of spacetime in (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  20. Minimal length in quantum gravity and the fate of Lorentz invariance.Amit Hagar - 2009 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 40 (3):259-267.
    Loop quantum gravity predicts that spatial geometry is fundamentally discrete. Whether this discreteness entails a departure from exact Lorentz symmetry is a matter of dispute that has generated an interesting methodological dilemma. On one hand one would like the theory to agree with current experiments, but, so far, tests in the highest energies we can manage show no such sign of departure. On the other hand one would like the theory to yield testable predictions, and deformations of (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   8 citations  
  21. A dilemma for the emergence of spacetime in canonical quantum gravity.Vincent Lam & Michael Esfeld - 2013 - Studies in History and Philosophy of Modern Physics 44 (3):286-293.
    The procedures of canonical quantization of the gravitational field apparently lead to entities for which any interpretation in terms of spatio-temporal localization or spatio-temporal extension seems difficult. This fact is the main ground for the suggestion that can often be found in the physics literature on canonical quantum gravity according to which spacetime may not be fundamental in some sense. This paper aims to investigate this radical suggestion from an ontologically serious point of view in the cases of (...)
    Direct download (7 more)  
     
    Export citation  
     
    Bookmark   34 citations  
  22. A Proposal for a Bohmian Ontology of Quantum Gravity.Antonio Vassallo & Michael Esfeld - 2013 - Foundations of Physics (1):1-18.
    The paper shows how the Bohmian approach to quantum physics can be applied to develop a clear and coherent ontology of non-perturbative quantum gravity. We suggest retaining discrete objects as the primitive ontology also when it comes to a quantum theory of space-time and therefore focus on loop quantum gravity. We conceive atoms of space, represented in terms of nodes linked by edges in a graph, as the primitive ontology of the theory and (...)
    Direct download (8 more)  
     
    Export citation  
     
    Bookmark   8 citations  
  23.  25
    Incubating a future metaphysics: quantum gravity.Joshua Norton - 2020 - Synthese 197 (5):1961-1982.
    In this paper, I will argue that metaphysicians ought to utilize quantum theories of gravity as incubators for a future metaphysics. I will argue why this ought to be done and will present cases studies from the history of science where physical theories have challenged both the dogmatic and speculative metaphysician. I provide two theories of QG and demonstrate the challenge they pose to certain aspects of our current metaphysics; in particular, how they challenge our understanding of the (...)
    No categories
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  24.  52
    Effective Spacetime: Understanding Emergence in Effective Field Theory and Quantum Gravity.Karen Crowther - 2016 - Cham: Springer.
    This book discusses the notion that quantum gravity may represent the "breakdown" of spacetime at extremely high energy scales. If spacetime does not exist at the fundamental level, then it has to be considered "emergent", in other words an effective structure, valid at low energy scales. The author develops a conception of emergence appropriate to effective theories in physics, and shows how it applies (or could apply) in various approaches to quantum gravity, including condensed matter approaches, (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   32 citations  
  25.  50
    Incubating a Future Metaphysics: Quantum Gravity.Joshua Norton - unknown
    In this paper, I will argue that metaphysicians ought to utilize quantum theories of gravity as incubators for a future metaphysics. In §1, I will argue why this ought to be done. In §2, I will present case studies from the history of science where physical theories have challenged both the dogmatic and speculative metaphysician. In §3, I will present two theories of QG and demonstrate the challenge they pose to certain aspects of our current metaphysics; in particular, (...)
    No categories
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  26.  18
    Unimodular quantum gravity and the cosmological constant.R. Percacci - 2018 - Foundations of Physics 48 (10):1364-1379.
    It is shown that the one-loop effective action of unimodular gravity is the same as that of ordinary gravity, restricted to unimodular metrics. The only difference is in the treatment of the global scale degree of freedom and of the cosmological term. A constant vacuum energy does not gravitate, addressing one aspect of the cosmological constant problem.
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark  
  27.  38
    Three principles for canonical quantum gravity.Rodolfo Gambini & Jorge Pullin - 2014 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 46 (2):164-169.
    We outline three principles that should guide us in the construction of a theory of canonical quantum gravity: diffeomorphism invariance, implementing the proper dynamics and related constraint algebra, local Lorentz invariance. We illustrate each of them with its role in model calculations in loop quantum gravity.
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark  
  28.  51
    A Dilemma For The Emergence Of Spacetime In Canonical Quantum Gravity.Vincent Lam & Michael Esfeld - 2013 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 44 (3):286-293.
    The procedures of canonical quantization of the gravitational field apparently lead to entities for which any interpretation in terms of spatio-temporal localization or spatio-temporal extension seems difficult. This fact is the main ground for the suggestion that can often be found in the physics literature on canonical quantum gravity according to which spacetime may not be fundamental in some sense. This paper aims to investigate this radical suggestion from an ontologically serious point of view in the cases of (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   33 citations  
  29.  82
    Appearing Out of Nowhere: The Emergence of Spacetime in Quantum Gravity.Karen Crowther - 2014 - Dissertation, University of Sydney
    Quantum gravity is understood as a theory that, in some sense, unifies general relativity (GR) and quantum theory, and is supposed to replace GR at extremely small distances (high-energies). It may be that quantum gravity represents the breakdown of spacetime geometry described by GR. The relationship between quantum gravity and spacetime has been deemed ``emergence'', and the aim of this thesis is to investigate and explicate this relation. After finding traditional philosophical accounts of (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   4 citations  
  30.  48
    In search of lost spacetime: philosophical issues arising in quantum gravity.Christian Wuthrich - unknown
    This paper issues a call to arms and seeks to entice the reader with some of the most captivating philosophical puzzles arising in quantum gravity. The analysis will be prefaced, in Section 1, by general considerations concerning the need for finding a quantum theory of gravity and the methods used in the pursuit of this goal. After mapping the field in Section 2, loop quantum gravity is introduced as an important competitor and particularly (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  31.  32
    Quantum General Invariance and Loop Gravity.D. C. Salisbury - 2001 - Foundations of Physics 31 (7):1105-1118.
    A quantum physical projector is proposed for generally covariant theories which are derivable from a Lagrangian. The projector is the quantum analogue of the integral over the generators of finite one-parameter subgroups of the gauge symmetry transformations which are connected to the identity. Gauge variables are retained in this formalism, thus permitting the construction of spacetime area and volume operators in a tentative spacetime loop formulation of quantum general relativity.
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark  
  32.  24
    How far are we from the quantum theory of gravity?Lee Smolin - 2003 - arXiv.
    An assessment is offered of the progress that the major approaches to quantum gravity have made towards the goal of constructing a complete and satisfactory theory. The emphasis is on loop quantum gravity and string theory, although other approaches are discussed, including dynamical triangulation models (euclidean and lorentzian) regge calculus models, causal sets, twistor theory, non-commutative geometry and models based on analogies to condensed matter systems. We proceed by listing the questions the theories are expected (...)
    Direct download  
     
    Export citation  
     
    Bookmark   14 citations  
  33.  3
    The Quantum World: Philosophical Debates on Quantum Physics.Bernard D'Espagnat & Hervé Zwirn (eds.) - 2017 - Cham: Imprint: Springer.
    In this largely nontechnical book, eminent physicists and philosophers address the philosophical impact of recent advances in quantum physics. These are shown to shed new light on profound questions about realism, determinism, causality or locality. The participants contribute in the spirit of an open and honest discussion, reminiscent of the time when science and philosophy were inseparable. After the editors' introduction, the next chapter reveals the strangeness of quantum mechanics and the subsequent discussions examine our notion of reality. (...)
    No categories
    Direct download  
     
    Export citation  
     
    Bookmark   1 citation  
  34.  17
    A Non-Geometrodynamic Quantum Yang–Mills Theory of Gravity Based on the Homogeneous Lorentz Group.Ahmad Borzou - 2021 - Foundations of Physics 51 (1):1-34.
    In this paper, we present a non-geometrodynamic quantum Yang–Mills theory of gravity based on the homogeneous Lorentz group within the general framework of the Poincare gauge theories. The obstacles of this treatment are that first, on the one hand, the gauge group that is available for this purpose is non-compact. On the other hand, Yang–Mills theories with non-compact groups are rarely healthy, and only a few instances exist in the literature. Second, it is not clear how the direct (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  35.  6
    The Problem of Time: Quantum Mechanics Versus General Relativity.Edward Anderson - 2017 - Cham: Imprint: Springer.
    This book is a treatise on time and on background independence in physics. It first considers how time is conceived of in each accepted paradigm of physics: Newtonian, special relativity, quantum mechanics (QM) and general relativity (GR). Substantial differences are moreover uncovered between what is meant by time in QM and in GR. These differences jointly source the Problem of Time: Nine interlinked facets which arise upon attempting concurrent treatment of the QM and GR paradigms, as is required in (...)
    Direct download  
     
    Export citation  
     
    Bookmark   6 citations  
  36. Space Emergence in Contemporary Physics: Why We Do Not Need Fundamentality, Layers of Reality and Emergence.Baptiste Le Bihan - 2018 - Disputatio 10 (49):71-95.
    ‘Space does not exist fundamentally: it emerges from a more fundamental non-spatial structure.’ This intriguing claim appears in various research programs in contemporary physics. Philosophers of physics tend to believe that this claim entails either that spacetime does not exist, or that it is derivatively real. In this article, I introduce and defend a third metaphysical interpretation of the claim: reductionism about space. I argue that, as a result, there is no need to subscribe to fundamentality, layers of reality and (...)
    Direct download (7 more)  
     
    Export citation  
     
    Bookmark   31 citations  
  37. Priority Monism Beyond Spacetime.Baptiste Le Bihan - 2018 - Metaphysica 19 (1):95-111.
    I will defend two claims. First, Schaffer's priority monism is in tension with many research programs in quantum gravity. Second, priority monism can be modified into a view more amenable to this physics. The first claim is grounded in the fact that promising approaches to quantum gravity such as loop quantum gravity or string theory deny the fundamental reality of spacetime. Since fundamental spacetime plays an important role in Schaffer's priority monism by being (...)
    Direct download (7 more)  
     
    Export citation  
     
    Bookmark   31 citations  
  38.  5
    Consistency of Quantum Computation and the Equivalence Principle.Marcin Nowakowski - forthcoming - Foundations of Science:1-8.
    The equivalence principle, being one of the building blocks of general relativity, seems to be crucial for analysis of quantum effects in gravity. In this paper we consider the relation between the equivalence principle and the consistency of quantum information processing in gravitational field. We propose an analysis with a looped evolution consisting of steps both in the gravitational field and in the accelerated reference frame. We show that without the equivalence principle the looped quantum evolution (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  39. Quantum Gravity and Mereology: Not So Simple.Sam Baron & Baptiste Le Bihan - 2022 - Philosophical Quarterly 72 (1):19-40.
    A number of philosophers have argued in favour of extended simples on the grounds that they are needed by fundamental physics. The arguments typically appeal to theories of quantum gravity. To date, the argument in favour of extended simples has ignored the fact that the very existence of spacetime is put under pressure by quantum gravity. We thus consider the case for extended simples in the context of different views on the existence of spacetime. We show (...)
    Direct download (7 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  40. Quantum gravity: A Primer for philosophers.Dean Rickles - unknown
    Quantum Gravity’ does not denote any existing theory: the field of quantum gravity is very much a ‘work in progress’. As you will see in this chapter, there are multiple lines of attack each with the same core goal: to find a theory that unifies, in some sense, general relativity (Einstein’s classical field theory of gravitation) and quantum field theory (the theoretical framework through which we understand the behaviour of particles in non-gravitational fields). Quantum (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   21 citations  
  41.  97
    Time in quantum gravity.Nick Huggett, Tiziana Vistarini & Christian Wuthrich - 2012 - .
    Quantum gravity--the marriage of quantum physics with general relativity--is bound to contain deep and important lessons for the nature of physical time. Some of these lessons shall be canvassed here, particularly as they arise from quantum general relativity and string theory and related approaches. Of particular interest is the question of which of the intuitive aspects of time will turn out to be fundamental, and which 'emergent' in some sense.
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   22 citations  
  42. Quantum gravity, timelessness, and the folk concept of time.Andrew J. Latham & Kristie Miller - 2020 - Synthese 198 (10):9453-9478.
    What it would take to vindicate folk temporal error theory? This question is significant against a backdrop of new views in quantum gravity—so-called timeless physical theories—that claim to eliminate time by eliminating a one-dimensional substructure of ordered temporal instants. Ought we to conclude that if these views are correct, nothing satisfies the folk concept of time and hence that folk temporal error theory is true? In light of evidence we gathered, we argue that physical theories that entirely eliminate (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  43. Quantum gravity, timelessness, and the contents of thought.David Braddon-Mitchell & Kristie Miller - 2019 - Philosophical Studies 176 (7):1807-1829.
    A number of recent theories of quantum gravity lack a one-dimensional structure of ordered temporal instants. Instead, according to many of these views, our world is either best represented as a single three-dimensional object, or as a configuration space composed of such three-dimensional objects, none of which bear temporal relations to one another. Such theories will be empirically self-refuting unless they can accommodate the existence of conscious beings capable of representation. For if representation itself is impossible in a (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   10 citations  
  44. Quantum Gravity and Phenomenological Philosophy.Steven M. Rosen - 2008 - Foundations of Physics 38 (6):556-582.
    The central thesis of this paper is that contemporary theoretical physics is grounded in philosophical presuppositions that make it difficult to effectively address the problems of subject-object interaction and discontinuity inherent to quantum gravity. The core objectivist assumption implicit in relativity theory and quantum mechanics is uncovered and we see that, in string theory, this assumption leads into contradiction. To address this challenge, a new philosophical foundation is proposed based on the phenomenology of Maurice Merleau-Ponty and Martin (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   5 citations  
  45.  53
    Quantum Gravity: A Dogma of Unification?Kian Salimkhani - 2018 - In Alexander Christian, David Hommen, Nina Retzlaff & Gerhard Schurz (eds.), Philosophy of Science. European Studies in Philosophy of Science, vol 9. Cham: Springer. pp. 23-41.
    The quest for a theory of quantum gravity is usually understood to be driven by philosophical assumptions external to physics proper. It is suspected that specifically approaches in the context of particle physics are rather based on metaphysical premises than experimental data or physical arguments. I disagree. In this paper, I argue that the quest for a theory of quantum gravity sets an important example of physics’ internal unificatory practice. It is exactly Weinberg’s and others’ particle (...)
    Direct download  
     
    Export citation  
     
    Bookmark   5 citations  
  46. Quantum Gravity in a Laboratory?Nick Huggett, Niels S. Linnemann & Mike D. Schneider - manuscript
    It has long been thought that observing distinctive traces of quantum gravity in a laboratory setting is effectively impossible, since gravity is so much weaker than all the other familiar forces in particle physics. But the quantum gravity phenomenology community today seeks to do the (effectively) impossible, using a challenging novel class of `tabletop' Gravitationally Induced Entanglement (GIE) experiments, surveyed here. The hypothesized outcomes of the GIE experiments are claimed by some (but disputed by others) (...)
    Direct download  
     
    Export citation  
     
    Bookmark   1 citation  
  47.  45
    An Inhomogeneous Space–Time Patching Model Based on a Nonlocal and Nonlinear Schrödinger Equation.Christine C. Dantas - 2016 - Foundations of Physics 46 (10):1269-1292.
    We consider an integrable, nonlocal and nonlinear, Schrödinger equation as a model for building space–time patchings in inhomogeneous loop quantum cosmology. We briefly review exact solutions of the NNSE, specially those obtained through “geometric equivalence” methods. Furthemore, we argue that the integrability of the NNSE could be linked to consistency conditions derived from LQC, under the assumption that the patchwork dynamics behaves as an integrable many-body system.
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark  
  48. Quantum Gravity and Taoist Cosmology: Exploring the Ancient Origins of Phenomenological String Theory.Steven M. Rosen - 2017 - Progress in Biophysics and Molecular Biology 131:34-60.
    In the author’s previous contribution to this journal (Rosen 2015), a phenomenological string theory was proposed based on qualitative topology and hypercomplex numbers. The current paper takes this further by delving into the ancient Chinese origin of phenomenological string theory. First, we discover a connection between the Klein bottle, which is crucial to the theory, and the Ho-t’u, a Chinese number archetype central to Taoist cosmology. The two structures are seen to mirror each other in expressing the psychophysical (phenomenological) action (...)
    Direct download  
     
    Export citation  
     
    Bookmark  
  49. Fakeons, quantum gravity and the correspondence principle.Damiano Anselmi - manuscript
    The correspondence principle made of unitarity, locality and renormalizability has been very successful in quantum field theory. Among the other things, it helped us build the standard model. However, it also showed important limitations. For example, it failed to restrict the gauge group and the matter sector in a powerful way. After discussing its effectiveness, we upgrade it to make room for quantum gravity. The unitarity assumption is better understood, since it allows for the presence of physical (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  50.  88
    Quantum Gravity on a Quantum Computer?Achim Kempf - 2014 - Foundations of Physics 44 (5):472-482.
    EPR-type measurements on spatially separated entangled spin qubits allow one, in principle, to detect curvature. Also the entanglement of the vacuum state is affected by curvature. Here, we ask if the curvature of spacetime can be expressed entirely in terms of the spatial entanglement structure of the vacuum. This would open up the prospect that quantum gravity could be simulated on a quantum computer and that quantum information techniques could be fully employed in the study of (...)
    Direct download (7 more)  
     
    Export citation  
     
    Bookmark   1 citation  
1 — 50 / 976