Proceedings of the Tenth Brazilian Conference on Mathematical Logic. Coleção CLE, volume 14, 1995. Centro De Lógica, Epistemologia e História da Ciência, Unicamp, Campinas, SP, Brazil.
We must restrict to mere probability not only statements of comparatively great uncertainty, like predictions about the weather, where we would cautiously ...
This is identical with the first edition (see 21: 2716) except for the addition of a Supplement containing 5 previously published articles and the bringing of the bibliography (now 73 items) up to date. The 5 added articles present clarifications or modifications of views expressed in the first edition. (PsycINFO Database Record (c) 2009 APA, all rights reserved).
Proofs and Refutations is essential reading for all those interested in the methodology, the philosophy and the history of mathematics. Much of the book takes the form of a discussion between a teacher and his students. They propose various solutions to some mathematical problems and investigate the strengths and weaknesses of these solutions. Their discussion (which mirrors certain real developments in the history of mathematics) raises some philosophical problems and some problems about the nature of mathematical discovery or (...) creativity. Imre Lakatos is concerned throughout to combat the classical picture of mathematical development as a steady accumulation of established truths. He shows that mathematics grows instead through a richer, more dramatic process of the successive improvement of creative hypotheses by attempts to 'prove' them and by criticism of these attempts: the logic of proofs and refutations. (shrink)
This book is concerned with `the problem of existence in mathematics'. It develops a mathematical system in which there are no existence assertions but only assertions of the constructibility of certain sorts of things. It explores the philosophical implications of such an approach through an examination of the writings of Field, Burgess, Maddy, Kitcher, and others.
ELEMENTARY LOGIC GR. C. MOISIL Institute of Mathematics, Rumanian Academy, Bucharest, Rumania 1. We shall consider a typified logic of propositions. ...
This volume will be of particular interest to researchers working in the history, and in the philosophy, of logic and mathematics, and more generally, to ...
This long awaited book gives a thorough account of the mathematical foundations of Temporal Logic, one of the most important areas of logic in computer science.The book, which consists of fifteen chapters, moves on from giving a solid introduction in semantical and axiomatic approaches to temporal logic to covering the central topics of predicate temporal logic, meta-languages, general theories of axiomatization, many dimensional systems, propositionalquantifiers, expressive power, Henkin dimension, temporalization of other logics, and decidability results.Much of the research presented (...) here is frontline in the new results and in the unifying methodology. This is an indispensable reference work for both the pure logician and the theoretical computer scientist. (shrink)
A Mathematical Introduction to Logic, Second Edition, offers increased flexibility with topic coverage, allowing for choice in how to utilize the textbook in a course. The author has made this edition more accessible to better meet the needs of today's undergraduate mathematics and philosophy students. It is intended for the reader who has not studied logic previously, but who has some experience in mathematical reasoning. Material is presented on computer science issues such as computational complexity and database queries, (...) with additional coverage of introductory material such as sets. Increased flexibility of the text, allowing instructors more choice in how they use the textbook in courses. Reduced mathematical rigour to fit the needs of undergraduate students. (shrink)
Proofs and Refutations is essential reading for all those interested in the methodology, the philosophy and the history of mathematics. Much of the book takes the form of a discussion between a teacher and his students. They propose various solutions to some mathematical problems and investigate the strengths and weaknesses of these solutions. Their discussion raises some philosophical problems and some problems about the nature of mathematical discovery or creativity. Imre Lakatos is concerned throughout to combat the classical (...) picture of mathematical development as a steady accumulation of established truths. He shows that mathematics grows instead through a richer, more dramatic process of the successive improvement of creative hypotheses by attempts to 'prove' them and by criticism of these attempts: the logic of proofs and refutations. (shrink)
Undergraduate students with no prior classroom instruction in mathematical logic will benefit from this evenhanded multipart text by one of the centuries greatest authorities on the subject. Part I offers an elementary but thorough overview of mathematical logic of first order. The treatment does not stop with a single method of formulating logic; students receive instruction in a variety of techniques, first learning model theory (truth tables), then Hilbert-type proof theory, and proof theory handled through derived rules. Part (...) II supplements the material covered in Part I and introduces some of the newer ideas and the more profound results of logical research in the twentieth century. Subsequent chapters introduce the study of formal number theory, with surveys of the famous incompleteness and undecidability results of Godel, Church, Turing, and others. The emphasis in the final chapter reverts to logic, with examinations of Godel's completeness theorem, Gentzen's theorem, Skolem's paradox and nonstandard models of arithmetic, and other theorems. Unabridged republication of the edition published by John Wiley & Sons, Inc. New York, 1967. Preface. Bibliography. Theorem and Lemma Numbers: Pages. List of Postulates. Symbols and Notations. Index. (shrink)
This volume began as a remembrance of Alonzo Church while he was still with us and is now finally complete. It contains papers by many well-known scholars, most of whom have been directly influenced by Church's own work. Often the emphasis is on foundational issues in logic, mathematics, computation, and philosophy - as was the case with Church's contributions, now universally recognized as having been of profound fundamental significance in those areas. The volume will be of interest to logicians, computer (...) scientists, philosophers, and linguists. The contributions concern classical first-order logic, higher-order logic, non-classical theories of implication, set theories with universal sets, the logical and semantical paradoxes, the lambda-calculus, especially as it is used in computation, philosophical issues about meaning and ontology in the abstract sciences and in natural language, and much else. The material will be accessible to specialists in these areas and to advanced graduate students in the respective fields. (shrink)
The IOth International Congress of Logic, Methodology and Philosophy of Science, which took place in Florence in August 1995, offered a vivid and comprehensive picture of the present state of research in all directions of Logic and Philosophy of Science. The final program counted 51 invited lectures and around 700 contributed papers, distributed in 15 sections. Following the tradition of previous LMPS-meetings, some authors, whose papers aroused particular interest, were invited to submit their works for publication in a collection of (...) selected contributed papers. Due to the large number of interesting contributions, it was decided to split the collection into two distinct volumes: one covering the areas of Logic, Foundations of Mathematics and Computer Science, the other focusing on the general Philosophy of Science and the Foundations of Physics. As a leading choice criterion for the present volume, we tried to combine papers containing relevant technical results in pure and applied logic with papers devoted to conceptual analyses, deeply rooted in advanced present-day research. After all, we believe this is part of the genuine spirit underlying the whole enterprise of LMPS studies. (shrink)
8.3 The consistency proof -- 8.4 Applications of the consistency proof -- 8.5 Second-order arithmetic -- Problems -- Chapter 9: Set Theory -- 9.1 Axioms for sets -- 9.2 Development of set theory -- 9.3 Ordinals -- 9.4 Cardinals -- 9.5 Interpretations of set theory -- 9.6 Constructible sets -- 9.7 The axiom of constructibility -- 9.8 Forcing -- 9.9 The independence proofs -- 9.10 Large cardinals -- Problems -- Appendix The Word Problem -- Index.
Offering a collection of fifteen essays that deal with issues at the intersection of phenomenology, logic, and the philosophy of mathematics, this 2005 book is divided into three parts. Part I contains a general essay on Husserl's conception of science and logic, an essay of mathematics and transcendental phenomenology, and an essay on phenomenology and modern pure geometry. Part II is focused on Kurt Godel's interest in phenomenology. It explores Godel's ideas and also some work of Quine, Penelope Maddy and (...) Roger Penrose. Part III deals with elementary, constructive areas of mathematics. These are areas of mathematics that are closer to their origins in simple cognitive activities and in everyday experience. This part of the book contains essays on intuitionism, Hermann Weyl, the notion of constructive proof, Poincaré and Frege. (shrink)
This book contains an introduction to symbolic logic and a thorough discussion of mechanical theorem proving and its applications. The book consists of three major parts. Chapters 2 and 3 constitute an introduction to symbolic logic. Chapters 4–9 introduce several techniques in mechanical theorem proving, and Chapters 10 an 11 show how theorem proving can be applied to various areas such as question answering, problem solving, program analysis, and program synthesis.
The history of modern logic is usually written as the history of mathematical or, more general, symbolic logic. As such it was created by mathematicians. Not regarding its anticipations in Scholastic logic and in the rationalistic era, its continuous development began with George Boole's The Mathematical Analysis of Logic of 1847, and it became a mathematical subdiscipline in the early 20th century. This style of presentation cuts off one eminent line of development, the philosophical development of (...) logic, although logic is evidently one of the basic disciplines of philosophy. One needs only to recall some of the standard 19th century definitions of logic as, e.g., the art and science of reasoning (Whateley) or as giving the normative rules of correct reasoning (Herbart). In the paper the relationship between the philosophical and the mathematical development of logic will be discussed. Answers to the following questions will be provided: 1. What were the reasons for the philosophers' lack of interest in formal logic? 2. What were the reasons for the mathematicians' interest in logic? 3. What did "logic reform" mean in the 19th century? Were the systems of mathematical logic initially regarded as contributions to a reform of logic? 4. Was mathematical logic regarded as art, as science or as both? (shrink)
This introduction to mathematical logic starts with propositional calculus and first-order logic. Topics covered include syntax, semantics, soundness, completeness, independence, normal forms, vertical paths through negation normal formulas, compactness, Smullyan's Unifying Principle, natural deduction, cut-elimination, semantic tableaux, Skolemization, Herbrand's Theorem, unification, duality, interpolation, and definability. The last three chapters of the book provide an introduction to type theory (higher-order logic). It is shown how various mathematical concepts can be formalized in this very expressive formal language. This expressive notation (...) facilitates proofs of the classical incompleteness and undecidability theorems which are very elegant and easy to understand. The discussion of semantics makes clear the important distinction between standard and nonstandard models which is so important in understanding puzzling phenomena such as the incompleteness theorems and Skolem's Paradox about countable models of set theory. Some of the numerous exercises require giving formal proofs. A computer program called ETPS which is available from the web facilitates doing and checking such exercises. Audience: This volume will be of interest to mathematicians, computer scientists, and philosophers in universities, as well as to computer scientists in industry who wish to use higher-order logic for hardware and software specification and verification. (shrink)