7 found
  1. What is Shannon Information?Olimpia Lombardi, Federico Holik & Leonardo Vanni - 2016 - Synthese 193 (7):1983-2012.
    Despite of its formal precision and its great many applications, Shannon’s theory still offers an active terrain of debate when the interpretation of its main concepts is the task at issue. In this article we try to analyze certain points that still remain obscure or matter of discussion, and whose elucidation contribute to the assessment of the different interpretative proposals about the concept of information. In particular, we argue for a pluralist position, according to which the different views about information (...)
    Direct download (4 more)  
    Export citation  
    Bookmark   16 citations  
  2.  28
    A Pluralist View About Information.Olimpia Lombardi, Sebastian Fortin & Leonardo Vanni - unknown
    Focusing on Shannon information, this article shows that, even on the basis of the same formalism, there may be different interpretations of the concept of information, and that disagreements may be deep enough to lead to very different conclusions about the informational characterization of certain physical situations. On this basis, a pluralist view is argued for, according to which the concept of information is primarily a formal concept that can adopt different interpretations that are not mutually exclusive, but each useful (...)
    Direct download (5 more)  
    Export citation  
    Bookmark   9 citations  
  3.  36
    What is Quantum Information?Olimpia Lombardi, Federico Holik & Leonardo Vanni - 2016 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 56:17-26.
    In the present paper we develop different arguments to show that there are no reasons to consider that there exists quantum information as qualitatively different than Shannon information. There is only one kind of information, which can be coded by means of orthogonal or non-orthogonal states. The analogy between Shannon’s theory and Schumacher’s theory is confined to coding theorems. The attempt to extend the analogy beyond this original scope leads to a concept of quantum information that becomes indistinguishable from that (...)
    Direct download (8 more)  
    Export citation  
    Bookmark   4 citations  
  4.  54
    Time Translation of Quantum Properties.Roberto Laura & Leonardo Vanni - 2009 - Foundations of Physics 39 (2):160-173.
    Based on the notion of time translation, we develop a formalism to deal with the logic of quantum properties at different times. In our formalism it is possible to enlarge the usual notion of context to include composed properties involving properties at different times. We compare our results with the theory of consistent histories.
    Direct download (4 more)  
    Export citation  
    Bookmark   3 citations  
  5.  34
    Quantum Decoherence: A Logical Perspective.Sebastian Fortin & Leonardo Vanni - 2014 - Foundations of Physics 44 (12):1258-1268.
    The so-called classical limit of quantum mechanics is generally studied in terms of the decoherence of the state operator that characterizes a system. This is not the only possible approach to decoherence. In previous works we have presented the possibility of studying the classical limit in terms of the decoherence of relevant observables of the system. On the basis of this approach, in this paper we introduce the classical limit from a logical perspective, by studying the way in which the (...)
    Direct download (4 more)  
    Export citation  
    Bookmark   1 citation  
  6.  3
    Non-Unitary Evolution of Quantum Logics.Sebastian Fortin, Federico Holik & Leonardo Vanni - 2016 - In F. Bagarello, R. Passante & C. Trapani (eds.), Non-Hermitian Hamiltonians in Quantum Physics. Springer Proceedings in Physics, vol 184. Springer, Cham. pp. 219-234.
    In this work we present a dynamical approach to quantum logics. By changing the standard formalism of quantum mechanics to allow non-Hermitian operators as generators of time evolution, we address the question of how can logics evolve in time. In this way, we describe formally how a non-Boolean algebra may become a Boolean one under certain conditions. We present some simple models which illustrate this transition and develop a new quantum logical formalism based in complex spectral resolutions, a notion that (...)
    Direct download (3 more)  
    Export citation  
    Bookmark   1 citation  
  7.  14
    Medición cuántica y decoherencia: ¿qué medimos cuando medimos?Olímpia Lombardi & Leonardo Vanni - 2010 - Scientiae Studia 8 (2):273-291.
    No categories
    Direct download (7 more)  
    Export citation