A strong coloring on a cardinal $\kappa $ is a function $f:[\kappa ]^2\to \kappa $ such that for every $A\subseteq \kappa $ of full size $\kappa $, every color $\unicode{x3b3} <\kappa $ is attained by $f\restriction [A]^2$. The symbol $$ \begin{align*} \kappa\nrightarrow[\kappa]^2_{\kappa} \end{align*} $$ asserts the existence of a strong coloring on $\kappa $.We introduce the symbol $$ \begin{align*} \kappa\nrightarrow_p[\kappa]^2_{\kappa} \end{align*} $$ which asserts the existence of a coloring $f:[\kappa ]^2\to \kappa $ which is strong over a partition $p:[\kappa ]^2\to (...) \theta $. A coloring f is strong over p if for every $A\in [\kappa ]^{\kappa }$ there is $i<\theta $ so that for every color $\unicode{x3b3} <\kappa $ is attained by $f\restriction )$.We prove that whenever $\kappa \nrightarrow [\kappa ]^2_{\kappa }$ holds, also $\kappa \nrightarrow _p[\kappa ]^2_{\kappa }$ holds for an arbitrary finite partition p. Similarly, arbitrary finite p-s can be added to stronger symbols which hold in any model of ZFC. If $\kappa ^{\theta }=\kappa $, then $\kappa \nrightarrow _p[\kappa ]^2_{\kappa }$ and stronger symbols, like $\operatorname {Pr}_1_p$ or $\operatorname {Pr}_0_p$, also hold for an arbitrary partition p to $\theta $ parts.The symbols $$ \begin{gather*} \aleph_1\nrightarrow_p[\aleph_1]^2_{\aleph_1},\;\;\; \aleph_1\nrightarrow_p[\aleph_1\circledast \aleph_1]^2_{\aleph_1},\;\;\; \aleph_0\circledast\aleph_1\nrightarrow_p[1\circledast\aleph_1]^2_{\aleph_1}, \\ \operatorname{Pr}_1_p,\;\;\;\text{ and } \;\;\; \operatorname{Pr}_0_p \end{gather*} $$ hold for an arbitrary countable partition p under the Continuum Hypothesis and are independent over ZFC $+ \neg $ CH. (shrink)
If F ⊆ NN is an analytic family of pairwise eventually different functions then the following strong maximality condition fails: For any countable H ⊆ NN. no member of which is covered by finitely many functions from F, there is f ∈ F such that for all h ∈ H there are infinitely many integers k such that f(k) = h(k). However if V = L then there exists a coanalytic family of pairwise eventually different functions satisfying this strong maximality (...) condition. (shrink)
It is shown to be consistent that the reals are covered by ℵ1 meagre sets yet there is a Baire class 1 function which cannot be covered by fewer than ℵ2 continuous functions. A new cardinal invariant is introduced which corresponds to the least number of continuous functions required to cover a given function. This is characterized combinatorially. A forcing notion similar to, but not equivalent to, superperfect forcing is introduced.
Various questions posed by P. Nyikos concerning ultrafilters on ω and chains in the partial order (ω, <*) are answered. The main tool is the oracle chain condition and variations of it.
The Mycielski ideal M k is defined to consist of all sets $A \subseteq ^{\mathbb{N}}k$ such that $\{f \upharpoonright X: f \in A\} \neq ^Xk$ for all X ∈ [N] ℵ 0 . It will be shown that the covering numbers for these ideals are all equal. However, the covering numbers of the closely associated Roslanowski ideals will be shown to be consistently different.
It is shown to be consistent with set theory that every set of reals of size ℵ1 is null yet there are ℵ1 planes in Euclidean 3-space whose union is not null. Similar results will be obtained for other geometric objects. The proof relies on results from harmonic analysis about the boundedness of certain harmonic functions and a measure theoretic pigeonhole principle.
In this paper we show that it is consistent with ZFC that the cardinality of every maximal cofinitary group of Sym(ω) is strictly greater than the cardinal numbers o and a.
It is shown to be consistent that countable, Fréchet,α 1-spaces are first countable. The result is obtained by using a countable support iteration of proper partial orders of lengthω 2.
For a Polish group let be the minimal number of translates of a fixed closed nowhere dense subset of required to cover . For many locally compact this cardinal is known to be consistently larger than which is the smallest cardinality of a covering of the real line by meagre sets. It is shown that for several non-locally compact groups . For example the equality holds for the group of permutations of the integers, the additive group of a separable Banach (...) space with an unconditional basis and the group of homeomorphisms of various compact spaces. (shrink)
To any metric space it is possible to associate the cardinal invariant corresponding to the least number of rectifiable curves in the space whose union is not meagre. It is shown that this invariant can vary with the metric space considered, even when restricted to the class of convex subspaces of separable Banach spaces. As a corollary it is obtained that it is consistent with set theory that any set of reals of size ℵ 1 is meagre yet there are (...) ℵ 1 rectifiable curves in R 3 whose union is not meagre. The consistency of this statement when the phrase "rectifiable curves" is replaced by "straight lines" remains open. (shrink)