Major shifts in the field of model theory in the twentieth century have seen the development of new tools, methods, and motivations for mathematicians and philosophers. In this book, John T. Baldwin places the revolution in its historical context from the ancient Greeks to the last century, argues for local rather than global foundations for mathematics, and provides philosophical viewpoints on the importance of modern model theory for both understanding and undertaking mathematical practice. The volume also addresses the impact of (...) model theory on contemporary algebraic geometry, number theory, combinatorics, and differential equations. This comprehensive and detailed book will interest logicians and mathematicians as well as those working on the history and philosophy of mathematics. (shrink)
We emphasize the role of the choice of vocabulary in formalization of a mathematical area and remark that this is a particular preoccupation of logicians. We use this framework to discuss Kennedy’s notion of ‘formalism freeness’ in the context of various schools in model theory. Then we clarify some of the mathematical issues in recent discussions of purity in the proof of the Desargues proposition. We note that the conclusion of ‘spatial content’ from the Desargues proposition involves arguments which are (...) algebraic and even metamathematical. Hilbert showed that the Desargues proposition implies the coordinatizing ring is associative, which in turn implies the existence of a three-dimensional geometry in which the given plane can be embedded. With W. Howard we give a new proof, removing Hilbert’s ‘detour’ through algebra, of the ‘geometric’ embedding theorem. Finally, our investigation of purity leads to the conclusion that even the introduction of explicit definitions in a proof can violate purity. We argue that although both involve explicit definition, our proof of the embedding theorem is pure while Hilbert’s is not. Thus the determination of whether an argument is pure turns on the content of the particular proof. Moreover, formalizing the situation does not provide a tool for characterizing purity. (shrink)
Hrushovski originated the study of “flat” stable structures in constructing a new strongly minimal set and a stable 0-categorical pseudoplane. We exhibit a set of axioms which for collections of finite structure with dimension function δ give rise to stable generic models. In addition to the Hrushovski examples, this formalization includes Baldwin's almost strongly minimal non-Desarguesian projective plane and several others. We develop the new case where finite sets may have infinite closures with respect to the dimension function δ. In (...) particular, the generic structure need not be ω-saturated and so the argument for stability is significantly more complicated. We further show that these structures are “flat” and do not interpret a group. (shrink)
We give a general account of the goals of axiomatization, introducing a variant on Detlefsen’s notion of ‘complete descriptive axiomatization’. We describe how distinctions between the Greek and modern view of number, magnitude, and proportion impact the interpretation of Hilbert’s axiomatization of geometry. We argue, as did Hilbert, that Euclid’s propositions concerning polygons, area, and similar triangles are derivable from Hilbert’s first-order axioms. We argue that Hilbert’s axioms including continuity show much more than the geometrical propositions of Euclid’s theorems and (...) thus are an immodest complete descriptive axiomatization of that subject. (shrink)
We use κ-free but not Whitehead Abelian groups to constructElementary Classes (AEC) which satisfy the amalgamation property but fail various conditions on the locality of Galois-types. We introduce the notion that an AEC admits intersections. We conclude that for AEC which admit intersections, the amalgamation property can have no positive effect on locality: there is a transformation of AEC's which preserves non-locality but takes any AEC which admits intersections to one with amalgamation. More specifically we have: Theorem 5.3. There is (...) an AEC with amalgamation which is not (N₀, N₁)-tame but is 2(N0, ∞)-tame; Theorem 3.3. It is consistent with ZFC that there is an AEC with amalgamation which is not (≤ N₂, ≤ N₂)-compact. (shrink)
In Part I of this paper we argued that the first-order systems HP5 and EG are modest complete descriptive axiomatization of most of Euclidean geometry. In this paper we discuss two further modest complete descriptive axiomatizations: Tarksi’s for Cartesian geometry and new systems for adding $$\pi$$. In contrast we find Hilbert’s full second-order system immodest for geometrical purposes but appropriate as a foundation for mathematical analysis.
We prove two results on the stability spectrum for Lω1,ω. Here [Formula: see text] denotes an appropriate notion of Stone space of m-types over M. Theorem for unstable case: Suppose that for some positive integer m and for every α μ, K is not i-stable in μ. These results provide a new kind of sufficient condition for the unstable case and shed some light on the spectrum of strictly stable theories in this context. The methods avoid the use of compactness (...) in the theory under study. In this paper, we expound the construction of tree indiscernibles for sentences of Lω1,ω. Further we provide some context for a number of variants on the Ehrenfeucht–Mostowski construction. (shrink)
We study when classes can have the disjoint amalgamation property for a proper initial segment of cardinals. Theorem A For every natural number k, there is a class $K_k $ defined by a sentence in $L_{\omega 1.\omega } $ that has no models of cardinality greater than $ \supset _{k - 1} $ , but $K_k $ has the disjoint amalgamation property on models of cardinality less than or equal to $\mathfrak{N}_{k - 3} $ and has models of cardinality $\mathfrak{N}_{k (...) - 1} $ . More strongly, we can have disjoint amalgamation up to $\mathfrak{N}_\alpha $ for α > ω, but have a bound on size of models. Theorem B For every countable ordinal a, there is a class $K_\alpha $ defined by a sentence in $L_{\omega 1.\omega } $ that has no models of cardinality greater than $ \supset _{\omega 1} $ , but K does have the disjoint amalgamation property on models of cardinality less than or equal to $\mathfrak{N}_\alpha $ . Finally we show that we can extend the $\mathfrak{N}_\alpha $ to $ \supset _\alpha $ in the second theorem consistently with ZFC and while having $\mathfrak{N}_i \ll \supset _i $ for 0 > i < α. Similar results hold for arbitrary ordinals α with |α|= K and $L_{k + ,\omega } $. (shrink)
We provide a general framework for studying the expansion of strongly minimal sets by adding additional relations in the style of Hrushovski. We introduce a notion of separation of quantifiers which is a condition on the class of expansions of finitely generated models for the expanded theory to have a countable ω-saturated model. We apply these results to construct for each sufficiently fast growing finite-to-one function μ from 'primitive extensions' to the natural numbers a theory T μ of an expansion (...) of an algebraically closed field which has Morley rank 2. Finally, we show that if μ is not finite-to-one the theory may not be ω-stable. (shrink)
In this paper we study abstract elementary classes of modules. We give several characterizations of when the class of modules A with is abstract elementary class with respect to the notion that M1 is a strong submodel M2 if the quotient remains in the given class.
We introduce the notion T does not omit obstructions. If a stable theory does not admit obstructions then it does not have the finite cover property . For any theory T, form a new theory $T_{\rm Aut}$ by adding a new unary function symbol and axioms asserting it is an automorphism. The main result of the paper asserts the following: If T is a stable theory, T does not admit obstructions if and only if $T_{\rm Aut}$ has a model companion. (...) The proof involves some interesting new consequences of the nfcp. (shrink)
We describe techniques for constructing models of size continuum inωsteps by simultaneously building a perfect set of enmeshed countable Henkin sets. Such models have perfect, asymptotically similar subsets. We survey applications involving Borel models, atomic models, two-cardinal transfers and models respecting various closure relations.
The projective plane of Baldwin 695) is model complete in a language with additional constant symbols. The infinite rank bicolored field of Poizat 1339) is not model complete. The finite rank bicolored fields of Baldwin and Holland 371; Notre Dame J. Formal Logic , to appear) are model complete. More generally, the finite rank expansions of a strongly minimal set obtained by adding a ‘random’ unary predicate are almost strongly minimal and model complete provided the strongly minimal set is ‘well-behaved’ (...) and admits ‘exactly rank k formulas’. The last notion is a geometric condition on strongly minimal sets formalized in this paper. (shrink)
We propose a criterion to regard a property of a theory as virtuous: the property must have significant mathematical consequences for the theory. We then rehearse results of Ajtai, Marek, Magidor, H. Friedman and Solovay to argue that for second order logic, ‘categoricity’ has little virtue. For first order logic, categoricity is trivial; but ‘categoricity in power’ has enormous structural consequences for any of the theories satisfying it. The stability hierarchy extends this virtue to other complete theories. The interaction of (...) model theory and traditional mathematics is examined by considering the views of such as Bourbaki, Hrushovski, Kazhdan, and Shelah to flesh out the argument that the main impact of formal methods on mathematics is using formal definability to obtain results in ‘mainstream’ mathematics. Moreover, these methods provide an organization for much mathematics which gives specific content to dreams of Bourbaki about the architecture of mathematics. (shrink)
We show that K-generic projective planes have Morley rank either two or infinity. We also show give a direct argument that such planes are not Desarguesian.
This paper ties together much of the model theory of the last 50 years. Shelah's attempts to generalize the Morley theorem beyond first order logic led to the notion of excellence, which is a key to the structure theory of uncountable models. The notion of Abstract Elementary Class arose naturally in attempting to prove the categoricity theorem for L ω 1 ,ω (Q). More recently, Zilber has attempted to identify canonical mathematical structures as those whose theory (in an appropriate logic) (...) is categorical in all powers. Zilber's trichotomy conjecture for first order categorical structures was refuted by Hrushovski, by the introducion of a special kind of Abstract Elementary Class. Zilber uses a powerful and essentailly infinitary variant on these techniques to investigate complex exponentiation. This not only demonstrates the relevance of Shelah's model theoretic investigations to mainstream mathematics but produces new results and conjectures in algebraic geometry. (shrink)
We introduce the notion T does not omit obstructions. If a stable theory does not admit obstructions then it does not have the finite cover property (nfcp). For any theory T, form a new theory by adding a new unary function symbol and axioms asserting it is an automorphism. The main result of the paper asserts the following: If T is a stable theory, T does not admit obstructions if and only if has a model companion. The proof involves some (...) interesting new consequences of the nfcp. (shrink)
Let $\mathbf{I}(\mu,K)$ denote the number of nonisomorphic models of power $\mu$ and $\mathbf{IE}(\mu,K)$ the number of nonmutually embeddable models. We define in this paper the notion of a diverse class and use it to prove a number of results. The major result is Theorem B: For any diverse class $K$ and $\mu$ greater than the cardinality of the language of $K$, $\mathbf{IE}(\mu,K) \geq \min(2^\mu,\beth_2).$ From it we deduce both an old result of Shelah, Theorem C: If $T$ is countable and (...) $\lambda_0 > \aleph_0$ then for every $\mu > \aleph_0,\mathbf{IE}(\mu,T) \geq \min(2^\mu,\beth_2)$, and an extension of that result to uncountable languages, Theorem D: If $|T| < 2^\omega,\lambda_0 > |T|$, and $|D(T)| = |T|$ then for $\mu > |T|$, $\mathbf{IE}(\mu,T) \geq \min(2^\mu,\beth_2).$. (shrink)
$\underline{\text{Saturation is} (\mu, \kappa)-\text{transferable in} T}$ if and only if there is an expansion T 1 of T with ∣ T 1 ∣ = ∣ T ∣ such that if M is a μ-saturated model of T 1 and ∣ M ∣ ≥ κ then the reduct M ∣ L(T) is κ-saturated. We characterize theories which are superstable without f.c.p., or without f.c.p. as, respectively those where saturation is (ℵ 0 , λ)- transferable or (κ (T), λ)-transferable for all λ. (...) Further if for some $\mu \geq \mid T \mid, 2^\mu > \mu^+$ , stability is equivalent to for all μ ≥ ∣ T ∣, saturation is (μ, 2 μ )- transferable. (shrink)
For $n < \omega$ , expand the structure (n, S, I, F) (with S the successor relation, I, F as the initial and final element) by forming graphs with edge probability n-α for irrational α, with $0 < \alpha < 1$ . The sentences in the expanded language, which have limit probability 1, form a complete and stable theory.
Let T be a complete countable first order theory and λ an uncountable cardinal. Theorem 1. If T is not superstable, T has 2 λ resplendent models of power λ. Theorem 2. If T is strictly superstable, then T has at least $\min(2^\lambda,\beth_2)$ resplendent models of power λ. Theorem 3. If T is not superstable or is small and strictly superstable, then every resplendent homogeneous model of T is saturated. Theorem 4 (with Knight). For each μ ∈ ω ∪ {ω, (...) 2 ω } there is a recursive theory in a finite language which has μ resplendent models of power κ for every infinite κ. (shrink)
We give a model theoretic proof, replacing admissible set theory by the Lopez-Escobar theorem, of Makkai's theorem: Every counterexample to Vaught's Conjecture has an uncountable model which realizes only countably many ℒ$_{ω₁,ω}$-types. The following result is new. Theorem: If a first-order theory is a counterexample to the Vaught Conjecture then it has 2\sp ℵ₁ models of cardinality ℵ₁.
We give a complete and elementary proof of the following upward categoricity theorem: let be a local abstract elementary class with amalgamation and joint embedding, arbitrarily large models, and countable Löwenheim–Skolem number. If is categorical in 1 then is categorical in every uncountable cardinal. In particular, this provides a new proof of the upward part of Morley’s theorem in first order logic without any use of prime models or heavy stability theoretic machinery.
A varietyV satisfies a strong Malcev condition ∃f1,…, ∃fnθ where θ is a conjunction of equations in the function variablesf1, …,fnand the individual variablesx1, …,xm, if there are polynomial symbolsp1, …,pnin the language ofVsuch that ∀x1, …,xmθ is a law ofV. Thus a strong Malcev condition involves restricted second order quantification of a strange sort. The quantification is restricted to functions which are “polynomially definable”. This notion was introduced by Malcev [6] who used it to describe those varieties all of (...) whose members have permutable congruence relations. The general formal definition of Malcev conditions is due to Grätzer [1]. Since then and especially since Jónsson's [3] characterization of varieties with distributive congruences there has been extensive study of strong Malcev conditions and the related concepts: Malcev conditions and weak Malcev conditions.In [9], Taylor gives necessary and sufficient semantic conditions for a class of varieties to be defined by a Malcev condition. A key to the proof is the translation of the restricted second order concepts into first order concepts in a certain many sorted language. In this paper we show that, given this translation, Taylor's theorem is an easy consequence of a result of Tarski [8] and the standard preservation theorems of first order logic. (shrink)
Theorem: For every k, there is an expansion of the theory of algebraically closed fields (of any fixed characteristic) which is almost strongly minimal with Morley rank k.
We explain and summarize the use of logic to provide a uniform perspective for studying limit laws on finite probability spaces. This work connects developments in stability theory, finite model theory, abstract model theory, and probability. We conclude by linking this context with work on the Urysohn space.