18 found
Order:
Disambiguations
John W. Rosenthal [14]John Rosenthal [11]John David Rosenthal [1]
  1.  30
    A new proof of a theorem of Shelah.John W. Rosenthal - 1972 - Journal of Symbolic Logic 37 (1):133-134.
  2.  11
    Intersections of algebraically closed fields.C. J. Ash & John W. Rosenthal - 1986 - Annals of Pure and Applied Logic 30 (2):103-119.
  3.  23
    Some highly undecidable lattices.Menachem Magidor, John W. Rosenthal, Mattiyahu Rubin & Gabriel Srour - 1990 - Annals of Pure and Applied Logic 46 (1):41-63.
  4.  28
    Hegel Decoder: A Reply to Smith's 'Reply'.John Rosenthal - 2001 - Historical Materialism 9 (1):111-151.
  5. Freedom's Devices: The Place of the Individual in Hegel's Philosophy of Right.John Rosenthal - 1991 - Radical Philosophy 59:27-32.
  6.  12
    Michael Morley. Countable models of ℵ1-categorical theories. Israel journal of mathematics, vol. 5 , pp. 65–72. - J. T. Baldwin and A. H. Lachlan. On strongly minimal sets. The journal of symbolic logic, vol. 36 ,pp. 79–96. [REVIEW]John W. Rosenthal - 1975 - Journal of Symbolic Logic 40 (4):636-637.
  7.  23
    Preface and Acknowledgments.John Rosenthal - 1991 - Graduate Faculty Philosophy Journal 14 (1):1-3.
  8.  20
    Truth in all of certain well‐founded countable models arising in set theory.John W. Rosenthal - 1975 - Mathematical Logic Quarterly 21 (1):97-106.
    Direct download  
     
    Export citation  
     
    Bookmark  
  9.  15
    On the Dimension Theory of N1-Categorical Theories with the Nontrivial Strong Elementary Intersection Property.John W. Rosenthal - 1979 - Zeitschrift fur mathematische Logik und Grundlagen der Mathematik 25 (19-24):359-362.
    No categories
    Direct download  
     
    Export citation  
     
    Bookmark  
  10.  21
    More undecidable lattices of Steinitz exchange systems.L. R. Galminas & John W. Rosenthal - 2002 - Journal of Symbolic Logic 67 (2):859-878.
    We show that the first order theory of the lattice $\mathscr{L}^{ (S) of finite dimensional closed subsets of any nontrivial infinite dimensional Steinitz Exhange System S has logical complexity at least that of first order number theory and that the first order theory of the lattice L(S ∞ ) of computably enumerable closed subsets of any nontrivial infinite dimensional computable Steinitz Exchange System S ∞ has logical complexity exactly that of first order number theory. Thus, for example, the lattice of (...)
    Direct download (8 more)  
     
    Export citation  
     
    Bookmark  
  11.  10
    Review: Michael Morley, Countable Models of $aleph_1$-Categorical Theories; J. T. Baldwin, A. H. Lachlan, On Strongly Minimal Sets. [REVIEW]John W. Rosenthal - 1975 - Journal of Symbolic Logic 40 (4):636-637.
  12.  11
    On the Dimension Theory of N1‐Categorical Theories with the Nontrivial Strong Elementary Intersection Property.John W. Rosenthal - 1979 - Mathematical Logic Quarterly 25 (19‐24):359-362.
    Direct download  
     
    Export citation  
     
    Bookmark  
  13.  5
    Preface and Acknowledgments.John Rosenthal - 1991 - Graduate Faculty Philosophy Journal 14 (1):1-3.
    No categories
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  14.  8
    The expected complexity of analytic tableaux analyses in propositional calculus.J. M. Plotkin & John W. Rosenthal - 1982 - Notre Dame Journal of Formal Logic 23 (4):409-426.
  15.  4
    Models of ${\rm Th}(\langle \omega^\omega<\rangle)$.John W. Rosenthal - 1974 - Notre Dame Journal of Formal Logic 15 (1):122-132.
  16.  21
    A Transcendental Deduction of the Categories Without the Categories.John Rosenthal - 1993 - International Philosophical Quarterly 33 (4):449-464.
    In this article, the author proposes to reconstruct Kant's "transcendental deduction" without in any way making use of the results of the so-called "metaphysical" one. His suggestion is that what Kant baptizes "pure concepts" or "categories" are in fact not "concepts" at all, strictly speaking, but rather the very forms of judgment from which these "concepts" were supposed to have been derived in the "metaphysical deduction". The task of the "transcendental" deduction is, then, to show that such forms of judgment (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  17.  2
    Partial n1- homogeneity of the countable saturated model of an n1 -categorical theory.John W. Rosenthal - 1975 - Mathematical Logic Quarterly 21 (1):307-308.
    Direct download  
     
    Export citation  
     
    Bookmark  
  18.  12
    Some theories associated with algebraically closed fields.Chris Ash & John Rosenthal - 1980 - Journal of Symbolic Logic 45 (2):359-362.