The multiverse view in set theory, introduced and argued for in this article, is the view that there are many distinct concepts of set, each instantiated in a corresponding set-theoretic universe. The universe view, in contrast, asserts that there is an absolute background set concept, with a corresponding absolute set-theoretic universe in which every set-theoretic question has a definite answer. The multiverse position, I argue, explains our experience with the enormous range of set-theoretic possibilities, a phenomenon that challenges the universe (...) view. In particular, I argue that the continuum hypothesis is settled on the multiverse view by our extensive knowledge about how it behaves in the multiverse, and as a result it can no longer be settled in the manner formerly hoped for. (shrink)
We analyze the precise modal commitments of several natural varieties of set-theoretic potentialism, using tools we develop for a general model-theoretic account of potentialism, building on those of Hamkins, Leibman and Löwe [14], including the use of buttons, switches, dials and ratchets. Among the potentialist conceptions we consider are: rank potentialism, Grothendieck–Zermelo potentialism, transitive-set potentialism, forcing potentialism, countable-transitive-model potentialism, countable-model potentialism, and others. In each case, we identify lower bounds for the modal validities, which are generally either S4.2 or S4.3, (...) and an upper bound of S5, proving in each case that these bounds are optimal. The validity of S5 in a world is a potentialist maximality principle, an interesting set-theoretic principle of its own. The results can be viewed as providing an analysis of the modal commitments of the various set-theoretic multiverse conceptions corresponding to each potentialist account. (shrink)
The lottery preparation, a new general kind of Laver preparation, works uniformly with supercompact cardinals, strongly compact cardinals, strong cardinals, measurable cardinals, or what have you. And like the Laver preparation, the lottery preparation makes these cardinals indestructible by various kinds of further forcing. A supercompact cardinal κ, for example, becomes fully indestructible by <κ-directed closed forcing; a strong cardinal κ becomes indestructible by κ-strategically closed forcing; and a strongly compact cardinal κ becomes indestructible by, among others, the forcing to (...) add a Cohen subset to κ, the forcing to shoot a club Cκ avoiding the measurable cardinals and the forcing to add various long Prikry sequences. The lottery preparation works best when performed after fast function forcing, which adds a new completely general kind of Laver function for any large cardinal, thereby freeing the Laver function concept from the supercompact cardinal context. (shrink)
The Lévy-Solovay Theorem [8] limits the kind of large cardinal embeddings that can exist in a small forcing extension. Here I announce a generalization of this theorem to a broad new class of forcing notions. One consequence is that many of the forcing iterations most commonly found in the large cardinal literature create no new weakly compact cardinals, measurable cardinals, strong cardinals, Woodin cardinals, strongly compact cardinals, supercompact cardinals, almost huge cardinals, huge cardinals, and so on.
The dream solution of the continuum hypothesis would be a solution by which we settle the continuum hypothesis on the basis of a newly discovered fundamental principle of set theory, a missing axiom, widely regarded as true. Such a dream solution would indeed be a solution, since we would all accept the new axiom along with its consequences. In this article, however, I argue that such a dream solution to $\mathrm {CH}$ is unattainable.
The class forcing theorem, which asserts that every class forcing notion ${\mathbb {P}}$ admits a forcing relation $\Vdash _{\mathbb {P}}$, that is, a relation satisfying the forcing relation recursion—it follows that statements true in the corresponding forcing extensions are forced and forced statements are true—is equivalent over Gödel–Bernays set theory $\text {GBC}$ to the principle of elementary transfinite recursion $\text {ETR}_{\text {Ord}}$ for class recursions of length $\text {Ord}$. It is also equivalent to the existence of truth predicates for the (...) infinitary languages $\mathcal {L}_{\text {Ord},\omega }$, allowing any class parameter A; to the existence of truth predicates for the language $\mathcal {L}_{\text {Ord},\text {Ord}}$ ; to the existence of $\text {Ord}$ -iterated truth predicates for first-order set theory $\mathcal {L}_{\omega,\omega }$ ; to the assertion that every separative class partial order ${\mathbb {P}}$ has a set-complete class Boolean completion; to a class-join separation principle; and to the principle of determinacy for clopen class games of rank at most $\text {Ord}+1$. Unlike set forcing, if every class forcing notion ${\mathbb {P}}$ has a forcing relation merely for atomic formulas, then every such ${\mathbb {P}}$ has a uniform forcing relation applicable simultaneously to all formulas. Our results situate the class forcing theorem in the rich hierarchy of theories between $\text {GBC}$ and Kelley–Morse set theory $\text {KM}$. (shrink)
Infinite time Turing machines extend the operation of ordinary Turing machines into transfinite ordinal time. By doing so, they provide a natural model of infinitary computability, a theoretical setting for the analysis of the power and limitations of supertask algorithms.
Infinite time Turing machines extend the operation of ordinary Turing machines into transfinite ordinal time. By doing so, they provide a natural model of infinitary computability, a theoretical setting for the analysis of the power and limitations of supertask algorithms.
We introduce the resurrection axioms, a new class of forcing axioms, and the uplifting cardinals, a new large cardinal notion, and prove that various instances of the resurrection axioms are equiconsistent over ZFC with the existence of an uplifting cardinal.
In this paper, following an idea of Christophe Chalons. I propose a new kind of forcing axiom, the Maximality Principle, which asserts that any sentence varphi holding in some forcing extension $V^P$ and all subsequent extensions $V^{P\ast Q}$ holds already in V. It follows, in fact, that such sentences must also hold in all forcing extensions of V. In modal terms, therefore, the Maximality Principle is expressed by the scheme $(\lozenge \square \varphi) \Rightarrow \square \varphi$ , and is equivalent to (...) the modal theory S5. In this article. I prove that the Maximality Principle is relatively consistent with ZFC. A boldface version of the Maximality Principle, obtained by allowing real parameters to appear in φ, is equiconsistent with the scheme asserting that $V_\delta \prec V$ for an inaccessible cardinal δ, which in turn is equiconsistent with the scheme asserting that ORD is Mahlo. The strongest principle along these lines is $\square MP\!_{\!\!\!\!\!\!_{\!\!_\sim}}$ , which asserts that $MP\!_{\!\!\!\!\!\!_{\!\!_\sim}}$ holds in V and all forcing extensions. From this, it follows that $0^\#$ exists, that $x^\#$ exists for every set x, that projective truth is invariant by forcing, that Woodin cardinals are consistent and much more. Many open questions remain. (shrink)
The main theorem of this article is that every countable model of set theory 〈M, ∈M〉, including every well-founded model, is isomorphic to a submodel of its own constructible universe 〈LM, ∈M〉 by means of an embedding j : M → LM. It follows from the proof that the countable models of set theory are linearly pre-ordered by embeddability: if 〈M, ∈M〉 and 〈N, ∈N〉 are countable models of set theory, then either M is isomorphic to a submodel of N (...) or conversely. Indeed, these models are pre-well-ordered by embeddability in order-type exactly ω1+ 1. Specifically, the countable well-founded models are ordered under embeddability exactly in accordance with the heights of their ordinals; every shorter model embeds into every taller model; every model of set theory M is universal for all countable well-founded binary relations of rank at most OrdM; and every ill-founded model of set theory is universal for all countable acyclic binary relations. Finally, strengthening a classical theorem of Ressayre, the proof method shows that if M is any nonstandard model of PA, then every countable model of set theory — in particular, every model of ZFC plus large cardinals — is isomorphic to a submodel of the hereditarily finite sets 〈 HFM, ∈M〉 of M. Indeed, 〈 HFM, ∈M〉 is universal for all countable acyclic binary relations. (shrink)
Can a supercompact cardinal κ be Laver indestructible when there is a level-by-level agreement between strong compactness and supercompactness? In this article, we show that if there is a sufficiently large cardinal above κ, then no, it cannot. Conversely, if one weakens the requirement either by demanding less indestructibility, such as requiring only indestructibility by stratified posets, or less level-by-level agreement, such as requiring it only on measure one sets, then yes, it can.
The generic Vopěnka principle, we prove, is relatively consistent with the ordinals being non-Mahlo. Similarly, the generic Vopěnka scheme is relatively consistent with the ordinals being definably non-Mahlo. Indeed, the generic Vopěnka scheme is relatively consistent with the existence of a \-definable class containing no regular cardinals. In such a model, there can be no \-reflecting cardinals and hence also no remarkable cardinals. This latter fact answers negatively a question of Bagaria, Gitman and Schindler.
The Gap Forcing Theorem, a key contribution of this paper, implies essentially that after any reverse Easton iteration of closed forcing, such as the Laver preparation, every supercompactness measure on a supercompact cardinal extends a measure from the ground model. Thus, such forcing can create no new supercompact cardinals, and, if the GCH holds, neither can it increase the degree of supercompactness of any cardinal; in particular, it can create no new measurable cardinals. In a crescendo of what I call (...) exact preservation theorems, I use this new technology to perform a kind of partial Laver preparation, and thereby finely control the class of posets which preserve a supercompact cardinal. Eventually, I prove the ‘As You Like It’ Theorem, which asserts that the class of κ -directed closed posets which preserve a supercompact cardinal κ can be made by forcing to conform with any pre-selected local definition which respects the equivalence of forcing. Along the way I separate completely the levels of the superdestructibility hierarchy, and, in an epilogue, prove that the notions of fragility and superdestructibility are orthogonal — all four combinations are possible. (shrink)
We present several generalizations of the well-known Kunen inconsistency that there is no nontrivial elementary embedding from the set-theoretic universe V to itself. For example, there is no elementary embedding from the universe V to a set-forcing extension V[G], or conversely from V[G] to V, or more generally from one set-forcing ground model of the universe to another, or between any two models that are eventually stationary correct, or from V to HOD, or conversely from HOD to V, or indeed (...) from any definable class to V, among many other possibilities we consider, including generic embeddings, definable embeddings and results not requiring the axiom of choice. We have aimed in this article for a unified presentation that weaves together some previously known unpublished or folklore results, several due to Woodin and others, along with our new contributions. (shrink)
We construct a variety of inner models exhibiting features usually obtained by forcing over universes with large cardinals. For example, if there is a supercompact cardinal, then there is an inner model with a Laver indestructible supercompact cardinal. If there is a supercompact cardinal, then there is an inner model with a supercompact cardinal κ for which 2 κ = κ +, another for which 2 κ = κ ++ and another in which the least strongly compact cardinal is supercompact. (...) If there is a strongly compact cardinal, then there is an inner model with a strongly compact cardinal, for which the measurable cardinals are bounded below it and another inner model W with a strongly compact cardinal κ, such that ${H^{V}_{\kappa^+} \subseteq {\rm HOD}^W}$ . Similar facts hold for supercompact, measurable and strongly Ramsey cardinals. If a cardinal is supercompact up to a weakly iterable cardinal, then there is an inner model of the Proper Forcing Axiom and another inner model with a supercompact cardinal in which GCH + V = HOD holds. Under the same hypothesis, there is an inner model with level by level equivalence between strong compactness and supercompactness, and indeed, another in which there is level by level inequivalence between strong compactness and supercompactness. If a cardinal is strongly compact up to a weakly iterable cardinal, then there is an inner model in which the least measurable cardinal is strongly compact. If there is a weakly iterable limit δ of <δ-supercompact cardinals, then there is an inner model with a proper class of Laver-indestructible supercompact cardinals. We describe three general proof methods, which can be used to prove many similar results. (shrink)
Given a countable model of set theory, we study the structure of its generic multiverse, the collection of its forcing extensions and ground models, ordered by inclusion. Mostowski showed that any finite poset embeds into the generic multiverse while preserving the nonexistence of upper bounds. We obtain several improvements of his result, using what we call the blockchain construction to build generic objects with varying degrees of mutual genericity. The method accommodates certain infinite posets, and we can realize these embeddings (...) via a wide variety of forcing notions, while providing control over lower bounds as well. We also give a generalization to class forcing in the context of second-order set theory, and exhibit some further structure in the generic multiverse, such as the existence of exact pairs. (shrink)
Superstrong cardinals are never Laver indestructible. Similarly, almost huge cardinals, huge cardinals, superhuge cardinals, rank-into-rank cardinals, extendible cardinals, 1-extendible cardinals, 0-extendible cardinals, weakly superstrong cardinals, uplifting cardinals, pseudo-uplifting cardinals, superstrongly unfoldable cardinals, Σn-reflecting cardinals, Σn-correct cardinals and Σn-extendible cardinals are never Laver indestructible. In fact, all these large cardinal properties are superdestructible: if κ exhibits any of them, with corresponding target θ, then in any forcing extension arising from nontrivial strategically <κ-closed forcing Q∈Vθ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} (...) \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{Q} \in V_\theta}$$\end{document}, the cardinal κ will exhibit none of the large cardinal properties with target θ or larger. (shrink)
If κ is any strongly unfoldable cardinal, then this is preserved in a forcing extension in which κ fails. This result continues the progression of the corresponding results for weakly compact cardinals, due to Woodin, and for indescribable cardinals, due to Hauser.
Small forcing always ruins the indestructibility of an indestructible supercompact cardinal. In fact, after small forcing, any cardinal κ becomes superdestructible--any further <κ--closed forcing which adds a subset to κ will destroy the measurability, even the weak compactness, of κ. Nevertheless, after small forcing indestructible cardinals remain resurrectible, but never strongly resurrectible.
A pointwise definable model is one in which every object is \loos definable without parameters. In a model of set theory, this property strengthens $V=\HOD$, but is not first-order expressible. Nevertheless, if \ZFC\ is consistent, then there are continuum many pointwise definable models of \ZFC. If there is a transitive model of \ZFC, then there are continuum many pointwise definable transitive models of \ZFC. What is more, every countable model of \ZFC\ has a class forcing extension that is pointwise definable. (...) Indeed, for the main contribution of this article, every countable model of Gödel-Bernays set theory has a pointwise definable extension, in which every set and class is first-order definable without parameters. (shrink)
In contrast to the robust mutual interpretability phenomenon in set theory, Ali Enayat proved that bi-interpretation is absent: distinct theories extending ZF are never bi-interpretable and models of ZF are bi-interpretable only when they are isomorphic. Nevertheless, for natural weaker set theories, we prove, including Zermelo–Fraenkel set theory $\mathrm {ZFC}^{-}$ without power set and Zermelo set theory Z, there are nontrivial instances of bi-interpretation. Specifically, there are well-founded models of $\mathrm {ZFC}^{-}$ that are bi-interpretable, but not isomorphic—even $\langle H_{\omega _1},\in (...) \rangle $ and $ \langle H_{\omega _2},\in \rangle $ can be bi-interpretable—and there are distinct bi-interpretable theories extending $\mathrm {ZFC}^{-}$. Similarly, using a construction of Mathias, we prove that every model of ZF is bi-interpretable with a model of Zermelo set theory in which the replacement axiom fails. (shrink)
We introduce the strongly uplifting cardinals, which are equivalently characterized, we prove, as the superstrongly unfoldable cardinals and also as the almost-hugely unfoldable cardinals, and we show that their existence is equiconsistent over ZFC with natural instances of the boldface resurrection axiom, such as the boldface resurrection axiom for proper forcing.
We analyze the effect of replacing several natural uses of definability in set theory by the weaker model-theoretic notion of algebraicity. We find, for example, that the class of hereditarily ordinal algebraic sets is the same as the class of hereditarily ordinal definable sets; that is, $\mathrm{HOA}=\mathrm{HOD}$. Moreover, we show that every algebraic model of $\mathrm{ZF}$ is actually pointwise definable. Finally, we consider the implicitly constructible universe Imp—an algebraic analogue of the constructible universe—which is obtained by iteratively adding not only (...) the sets that are definable over what has been built so far, but also those that are algebraic over the existing structure. While we know that $\mathrm{Imp}$ can differ from $L$, the subtler properties of this new inner model are just now coming to light. Many questions remain open. (shrink)
We summarize the known methods of producing a non-supercompact strongly compact cardinal and describe some new variants. Our Main Theorem shows how to apply these methods to many cardinals simultaneously and exactly control which cardinals are supercompact and which are only strongly compact in a forcing extension. Depending upon the method, the surviving non-supercompact strongly compact cardinals can be strong cardinals, have trivial Mitchell rank or even contain a club disjoint from the set of measurable cardinals. These results improve and (...) unify Theorems 1 and 2 of [5], due to the first author. (shrink)
Ehrenfeucht’s lemma asserts that whenever one element of a model of Peano arithmetic is definable from another, they satisfy different types. We consider here the analogue of Ehrenfeucht’s lemma for models of set theory. The original argument applies directly to the ordinal-definable elements of any model of set theory, and, in particular, Ehrenfeucht’s lemma holds fully for models of set theory satisfying V=HOD. We show that the lemma fails in the forcing extension of the universe by adding a Cohen real. (...) We go on to formulate a scheme of natural parametric generalizations of Ehrenfeucht’s lemma, namely, the principles of the form EL, which asserts that P-definability from A implies Q-discernibility. We also consider various analogues of Ehrenfeucht’s lemma obtained by using algebraicity in place of definability, where a set b is algebraic in a if it is a member of a finite set definable from a. Ehrenfeucht’s lemma holds for the ordinal-algebraic sets, we prove, if and only if the ordinal-algebraic and ordinal-definable sets coincide. Using a similar analysis, we answer two open questions posed earlier by the third author and C. Leahy, showing that algebraicity and definability need not coincide in models of set theory and the internal and external notions of being ordinal algebraic need not coincide. (shrink)
Applying the seed concept to Prikry tree forcing P μ , I investigate how well P μ preserves the maximality property of ordinary Prikry forcing and prove that P μ Prikry sequences are maximal exactly when μ admits no non-canonical seeds via a finite iteration. In particular, I conclude that if μ is a strongly normal supercompactness measure, then P μ Prikry sequences are maximal, thereby proving, for a large class of measures, a conjecture of W. Hugh Woodin's.
If the Wholeness Axiom wa $_0$ is itself consistent, then it is consistent with v=hod. A consequence of the proof is that the various Wholeness Axioms are not all equivalent. Additionally, the theory zfc+wa $_0$ is finitely axiomatizable.
We investigate various strong notions of rigidity for Souslin trees, separating them under ♢ into a hierarchy. Applying our methods to the automorphism tower problem in group theory, we show under ♢ that there is a group whose automorphism tower is highly malleable by forcing.
Infinite time Turing machines extend the operation of ordinary Turing machines into transfinite ordinal time. By doing so, they provide a natural model of infinitary computability, a theoretical setting for the analysis of the power and limitations of supertask algorithms.
We prove from suitable large cardinal hypotheses that the least weakly compact cardinal can be unfoldable, weakly measurable and even nearly θ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\theta}$$\end{document}-supercompact, for any desired θ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\theta}$$\end{document}. In addition, we prove several global results showing how the entire class of weakly compactcardinals, a proper class, can be made to coincide with the class of unfoldable cardinals, with the class of weakly measurable cardinals or (...) with the class of nearly θκ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\theta_\kappa}$$\end{document}-supercompact cardinals κ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\kappa}$$\end{document}, for nearly any desired function κ↦θκ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\kappa\mapsto\theta_\kappa}$$\end{document}. These results answer several questions that had been open in the literature and extend to these large cardinals the identity-crises phenomenon, first identified by Magidor with the strongly compact cardinals. (shrink)
We introduce an analogue of the theory of Borel equivalence relations in which we study equivalence relations that are decidable by an infinite time Turing machine. The Borel reductions are replaced by the more general class of infinite time computable functions. Many basic aspects of the classical theory remain intact, with the added bonus that it becomes sensible to study some special equivalence relations whose complexity is beyond Borel or even analytic. We also introduce an infinite time generalization of the (...) countable Borel equivalence relations, a key subclass of the Borel equivalence relations, and again show that several key properties carry over to the larger class. Lastly, we collect together several results from the literature regarding Borel reducibility which apply also to absolutely $\Delta^1_2$ reductions, and hence to the infinite time computable reductions. (shrink)
Unfoldable cardinals are preserved by fast function forcing and the Laver-like preparations that fast functions support. These iterations show, by set-forcing over any model of ZFC, that any given unfoldable cardinal κ can be made indestructible by the forcing to add any number of Cohen subsets to κ.
Recently in the philosophical literature there has been some effort made to understand the proper application of the theory of utilitarianism to worlds in which there are infinitely many bearers of utility. Here, we point out that one of the best, most inclusive principles proposed to date contradicts fundamental utilitarian ideas, such as the idea that adding more utility makes a better world.
If G is a centreless group, then τ denotes the height of the automorphism tower of G. We prove that it is consistent that for every cardinal λ and every ordinal α<λ, there exists a centreless group G such that τ=α; and if β is any ordinal such that 1β<λ, then there exists a notion of forcing , which preserves cofinalities and cardinalities, such that τ=β in the corresponding generic extension.
In the context of worlds with infinitely many bearers of utility, we argue that several collections of natural Utilitarian principles--principles which are certainly true in the classical finite Utilitarian context and which any Utilitarian would find appealing--are inconsistent.
We consider a set-theoretic version of mereology based on the inclusion relation ⊆ and analyze how well it might serve as a foundation of mathematics. After establishing the non-definability of ∈ from ⊆, we identify the natural axioms for ⊆-based mereology, which constitute a finitely axiomatizable, complete, decidable theory. Ultimately, for these reasons, we conclude that this form of set-theoretic mereology cannot by itself serve as a foundation of mathematics. Meanwhile, augmented forms of set-theoretic mereology, such as that obtained by (...) adding the singleton operator, are foundationally robust. (shrink)
The infinite time Turing machine analogue of Post's problem, the question whether there are semi-decidable supertask degrees between 0 and the supertask jump 0∇, has in a sense both positive and negative solutions. Namely, in the context of the reals there are no degrees between 0 and 0∇, but in the context of sets of reals, there are; indeed, there are incomparable semi-decidable supertask degrees. Both arguments employ a kind of transfinite-injury construction which generalizes canonically to oracles.
The rigid relation principle, introduced in this article, asserts that every set admits a rigid binary relation. This follows from the axiom of choice, because well-orders are rigid, but we prove that it is neither equivalent to the axiom of choice nor provable in Zermelo-Fraenkel set theory without the axiom of choice. Thus, it is a new weak choice principle. Nevertheless, the restriction of the principle to sets of reals is provable without the axiom of choice.
We introduce and consider the inner-model reflection principle, which asserts that whenever a statement \varphi(a) in the first-order language of set theory is true in the set-theoretic universe V, then it is also true in a proper inner model W \subset A. A stronger principle, the ground-model reflection principle, asserts that any such \varphi(a) true in V is also true in some non-trivial ground model of the universe with respect to set forcing. These principles each express a form of width (...) reflection in contrast to the usual height reflection of the Lévy–Montague reflection theorem. They are each equiconsistent with ZFC and indeed \Pi_2-conservative over ZFC, being forceable by class forcing while preserving any desired rank-initial segment of the universe. Furthermore, the inner-model reflection principle is a consequence of the existence of sufficient large cardinals, and lightface formulations of the reflection principles follow from the maximality principle MP and from the inner-model hypothesis IMH. We also consider some questions concerning the expressibility of the principles. (shrink)
We introduce the $\Sigma _1$ -definable universal finite sequence and prove that it exhibits the universal extension property amongst the countable models of set theory under end-extension. That is, the sequence is $\Sigma _1$ -definable and provably finite; the sequence is empty in transitive models; and if M is a countable model of set theory in which the sequence is s and t is any finite extension of s in this model, then there is an end-extension of M to a (...) model in which the sequence is t. Our proof method grows out of a new infinitary-logic-free proof of the Barwise extension theorem, by which any countable model of set theory is end-extended to a model of $V=L$ or indeed any theory true in a suitable submodel of the original model. The main theorem settles the modal logic of end-extensional potentialism, showing that the potentialist validities of the models of set theory under end-extensions are exactly the assertions of S4. Finally, we introduce the end-extensional maximality principle, which asserts that every possibly necessary sentence is already true, and show that every countable model extends to a model satisfying it. (shrink)