60 found
Order:
Disambiguations
James H. Schmerl [65]James Henry Schmerl [1]
  1.  17
    On maximal subgroups of the automorphism group of a countable recursively saturated model of PA.Roman Kossak, Henryk Kotlarski & James H. Schmerl - 1993 - Annals of Pure and Applied Logic 65 (2):125-148.
    We show that the stabilizer of an element a of a countable recursively saturated model of arithmetic M is a maximal subgroup of Aut iff the type of a is selective. This is a point of departure for a more detailed study of the relationship between pointwise and setwise stabilizers of certain subsets of M and the types of elements in those subsets. We also show that a complete type of PA is 2-indiscernible iff it is minimal in the sense (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   14 citations  
  2.  20
    Recursively saturated models generated by indiscernibles.James H. Schmerl - 1985 - Notre Dame Journal of Formal Logic 26 (2):99-105.
  3.  31
    Arithmetically Saturated Models of Arithmetic.Roman Kossak & James H. Schmerl - 1995 - Notre Dame Journal of Formal Logic 36 (4):531-546.
    The paper presents an outline of the general theory of countable arithmetically saturated models of PA and some of its applications. We consider questions concerning the automorphism group of a countable recursively saturated model of PA. We prove new results concerning fixed point sets, open subgroups, and the cofinality of the automorphism group. We also prove that the standard system of a countable arithmetically saturated model of PA is determined by the lattice of its elementary substructures.
    Direct download (6 more)  
     
    Export citation  
     
    Bookmark   11 citations  
  4.  21
    Minimal satisfaction classes with an application to rigid models of Peano arithmetic.Roman Kossak & James H. Schmerl - 1991 - Notre Dame Journal of Formal Logic 32 (3):392-398.
  5.  17
    On κ-like structures which embed stationary and closed unbounded subsets.James H. Schmerl - 1976 - Annals of Mathematical Logic 10 (3):289-314.
  6.  57
    Saturation and simple extensions of models of peano arithmetic.Matt Kaufmann & James H. Schmerl - 1984 - Annals of Pure and Applied Logic 27 (2):109-136.
  7.  54
    On the role of Ramsey quantifiers in first order arithmetic.James H. Schmerl & Stephen G. Simpson - 1982 - Journal of Symbolic Logic 47 (2):423-435.
  8.  40
    Remarks on weak notions of saturation in models of peano arithmetic.Matt Kaufmann & James H. Schmerl - 1987 - Journal of Symbolic Logic 52 (1):129-148.
  9.  32
    Making the Hyperreal Line Both Saturated and Complete.H. Jerome Keisler & James H. Schmerl - 1991 - Journal of Symbolic Logic 56 (3):1016-1025.
    In a nonstandard universe, the $\kappa$-saturation property states that any family of fewer than $\kappa$ internal sets with the finite intersection property has a nonempty intersection. An ordered field $F$ is said to have the $\lambda$-Bolzano-Weierstrass property iff $F$ has cofinality $\lambda$ and every bounded $\lambda$-sequence in $F$ has a convergent $\lambda$-subsequence. We show that if $\kappa < \lambda$ are uncountable regular cardinals and $\beta^\alpha < \lambda$ whenever $\alpha < \kappa$ and $\beta < \lambda$, then there is a $\kappa$-saturated nonstandard (...)
    Direct download (8 more)  
     
    Export citation  
     
    Bookmark   6 citations  
  10.  22
    Subsets coded in elementary end extensions.James H. Schmerl - 2014 - Archive for Mathematical Logic 53 (5-6):571-581.
  11.  29
    On power-like models for hyperinaccessible cardinals.James H. Schmerl & Saharon Shelah - 1972 - Journal of Symbolic Logic 37 (3):531-537.
  12.  18
    Moving Intersticial Gaps.James H. Schmerl - 2002 - Mathematical Logic Quarterly 48 (2):283-296.
    In a countable, recursively saturated model of Peano Arithmetic, an interstice is a maximal convex set which does not contain any definable elements. The interstices are partitioned into intersticial gaps in a way that generalizes the partition of the unbounded interstice into gaps. Continuing work of Bamber and Kotlarski [1], we investigate extensions of Kotlarski's Moving Gaps Lemma to the moving of intersticial gaps.
    No categories
    Direct download  
     
    Export citation  
     
    Bookmark   5 citations  
  13.  89
    The isomorphism property for nonstandard universes.James H. Schmerl - 1995 - Journal of Symbolic Logic 60 (2):512-516.
  14.  25
    Infinite substructure lattices of models of Peano Arithmetic.James H. Schmerl - 2010 - Journal of Symbolic Logic 75 (4):1366-1382.
    Bounded lattices (that is lattices that are both lower bounded and upper bounded) form a large class of lattices that include all distributive lattices, many nondistributive finite lattices such as the pentagon lattice N₅, and all lattices in any variety generated by a finite bounded lattice. Extending a theorem of Paris for distributive lattices, we prove that if L is an ℵ₀-algebraic bounded lattice, then every countable nonstandard model ������ of Peano Arithmetic has a cofinal elementary extension ������ such that (...)
    Direct download (6 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  15.  14
    Automorphism Groups of Saturated Models of Peano Arithmetic.Ermek S. Nurkhaidarov & James H. Schmerl - 2014 - Journal of Symbolic Logic 79 (2):561-584.
    Letκbe the cardinality of some saturated model of Peano Arithmetic. There is a set of${2^{{\aleph _0}}}$saturated models of PA, each having cardinalityκ, such that wheneverMandNare two distinct models from this set, then Aut(${\cal M}$) ≇ Aut ($${\cal N}$$).
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  16.  16
    Closed Normal Subgroups.James H. Schmerl - 2001 - Mathematical Logic Quarterly 47 (4):489-492.
    Let ℳ be a countable, recursively saturated model of Peano Arithmetic, and let Aut be its automorphism group considered as a topological group with the pointwise stabilizers of finite sets being the basic open subgroups. Kaye proved that the closed normal subgroups are precisely the obvious ones, namely the stabilizers of invariant cuts. A proof of Kaye's theorem is given here which, although based on his proof, is different enough to yield consequences not obtainable from Kaye's proof.
    Direct download  
     
    Export citation  
     
    Bookmark   4 citations  
  17.  23
    Generalizing special Aronszajn trees.James H. Schmerl - 1974 - Journal of Symbolic Logic 39 (4):732-740.
  18.  36
    On Cofinal Submodels and Elementary Interstices.Roman Kossak & James H. Schmerl - 2012 - Notre Dame Journal of Formal Logic 53 (3):267-287.
    We prove a number of results concerning the variety of first-order theories and isomorphism types of pairs of the form $(N,M)$ , where $N$ is a countable recursively saturated model of Peano Arithmetic and $M$ is its cofinal submodel. We identify two new isomorphism invariants for such pairs. In the strongest result we obtain continuum many theories of such pairs with the fixed greatest common initial segment of $N$ and $M$ and fixed lattice of interstructures $K$ , such that $M\prec (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  19.  30
    Elementary Cuts in Saturated Models of Peano Arithmetic.James H. Schmerl - 2012 - Notre Dame Journal of Formal Logic 53 (1):1-13.
    A model $\mathscr{M} = (M,+,\times, 0,1,<)$ of Peano Arithmetic $({\sf PA})$ is boundedly saturated if and only if it has a saturated elementary end extension $\mathscr{N}$. The ordertypes of boundedly saturated models of $({\sf PA})$ are characterized and the number of models having these ordertypes is determined. Pairs $(\mathscr{N},M)$, where $\mathscr{M} \prec_{\sf end} \mathscr{N} \models({\sf PA})$ for saturated $\mathscr{N}$, and their theories are investigated. One result is: If $\mathscr{N}$ is a $\kappa$-saturated model of $({\sf PA})$ and $\mathscr{M}_0, \mathscr{M}_1 \prec_{\sf end} (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  20.  49
    The automorphism group of a resplendent model.James H. Schmerl - 2012 - Archive for Mathematical Logic 51 (5-6):647-649.
  21.  39
    Theories with recursive models.Manuel Lerman & James H. Schmerl - 1979 - Journal of Symbolic Logic 44 (1):59-76.
  22.  43
    Self-Embeddings of Computable Trees.Stephen Binns, Bjørn Kjos-Hanssen, Manuel Lerman, James H. Schmerl & Reed Solomon - 2008 - Notre Dame Journal of Formal Logic 49 (1):1-37.
    We divide the class of infinite computable trees into three types. For the first and second types, 0' computes a nontrivial self-embedding while for the third type 0'' computes a nontrivial self-embedding. These results are optimal and we obtain partial results concerning the complexity of nontrivial self-embeddings of infinite computable trees considered up to isomorphism. We show that every infinite computable tree must have either an infinite computable chain or an infinite Π01 antichain. This result is optimal and has connections (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  23.  31
    Nondiversity in substructures.James H. Schmerl - 2008 - Journal of Symbolic Logic 73 (1):193-211.
    For a model M of Peano Arithmetic, let Lt(M) be the lattice of its elementary substructures, and let Lt⁺(M) be the equivalenced lattice (Lt(M), ≅M), where ≅M is the equivalence relation of isomorphism on Lt(M). It is known that Lt⁺(M) is always a reasonable equivalenced lattice. Theorem. Let L be a finite distributive lattice and let (L,E) be reasonable. If M₀ is a nonstandard prime model of PA, then M₀ has a confinal extension M such that Lt⁺(M) ≅ (L,E). A (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  24. Coinductive ℵ0-categorical theories.James H. Schmerl - 1990 - Journal of Symbolic Logic 55 (3):1130 - 1137.
  25. Decidability and ℵ0-categoricity of theories of partially ordered sets.James H. Schmerl - 1980 - Journal of Symbolic Logic 45 (3):585 - 611.
    This paper is primarily concerned with ℵ 0 -categoricity of theories of partially ordered sets. It contains some general conjectures, a collection of known results and some new theorems on ℵ 0 -categoricity. Among the latter are the following. Corollary 3.3. For every countable ℵ 0 -categorical U there is a linear order of A such that $(\mathfrak{U}, is ℵ 0 -categorical. Corollary 6.7. Every ℵ 0 -categorical theory of a partially ordered set of finite width has a decidable theory. (...)
    Direct download (7 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  26.  17
    Uncountable real closed fields with pa integer parts.David Marker, James H. Schmerl & Charles Steinhorn - 2015 - Journal of Symbolic Logic 80 (2):490-502.
  27.  16
    (1 other version)Automorphism Groups of Countable Arithmetically Saturated Models of Peano Arithmetic.James H. Schmerl - 2015 - Journal of Symbolic Logic 80 (4):1411-1434.
    If${\cal M},{\cal N}$are countable, arithmetically saturated models of Peano Arithmetic and${\rm{Aut}}\left( {\cal M} \right) \cong {\rm{Aut}}\left( {\cal N} \right)$, then the Turing-jumps of${\rm{Th}}\left( {\cal M} \right)$and${\rm{Th}}\left( {\cal N} \right)$are recursively equivalent.
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  28.  12
    The Pentagon as a Substructure Lattice of Models of Peano Arithmetic.James H. Schmerl - forthcoming - Journal of Symbolic Logic:1-20.
    Wilkie proved in 1977 that every countable model ${\mathcal M}$ of Peano Arithmetic has an elementary end extension ${\mathcal N}$ such that the interstructure lattice $\operatorname {\mathrm {Lt}}({\mathcal N} / {\mathcal M})$ is the pentagon lattice ${\mathbf N}_5$. This theorem implies that every countable nonstandard ${\mathcal M}$ has an elementary cofinal extension ${\mathcal N}$ such that $\operatorname {\mathrm {Lt}}({\mathcal N} / {\mathcal M}) \cong {\mathbf N}_5$. It is proved here that whenever ${\mathcal M} \prec {\mathcal N} \models \mathsf {PA}$ and (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  29.  16
    End extensions of models of arithmetic.James H. Schmerl - 1992 - Notre Dame Journal of Formal Logic 33 (2):216-219.
  30.  35
    An axiomatization for a class of two-cardinal models.James H. Schmerl - 1977 - Journal of Symbolic Logic 42 (2):174-178.
  31.  31
    An elementary sentence which has ordered models.James H. Schmerl - 1972 - Journal of Symbolic Logic 37 (3):521-530.
    Direct download (8 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  32.  16
    Coinductive $aleph_0$-Categorical Theories.James H. Schmerl - 1990 - Journal of Symbolic Logic 55 (3):1130-1137.
  33. Large resplendent models generated by indiscernibles.James H. Schmerl - 1989 - Journal of Symbolic Logic 54 (4):1382-1388.
  34.  17
    CP‐generic expansions of models of Peano Arithmetic.Athar Abdul-Quader & James H. Schmerl - 2022 - Mathematical Logic Quarterly 68 (2):171-177.
    We study notions of genericity in models of, inspired by lines of inquiry initiated by Chatzidakis and Pillay and continued by Dolich, Miller and Steinhorn in general model‐theoretic contexts. These papers studied the theories obtained by adding a “random” predicate to a class of structures. Chatzidakis and Pillay axiomatized the theories obtained in this way. In this article, we look at the subsets of models of which satisfy the axiomatization given by Chatzidakis and Pillay; we refer to these subsets in (...)
    No categories
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  35.  15
    PA( aa ).James H. Schmerl - 1995 - Notre Dame Journal of Formal Logic 36 (4):560-569.
    The theory PA(aa), which is Peano Arithmetic in the context of stationary logic, is shown to be consistent. Moreover, the first-order theory of the class of finitely determinate models of PA(aa) is characterized.
    Direct download (6 more)  
     
    Export citation  
     
    Bookmark  
  36.  14
    Recursive Models and the Divisibility Poset.James H. Schmerl - 1998 - Notre Dame Journal of Formal Logic 39 (1):140-148.
  37.  7
    Logic year 1979-80, the University of Connecticut, USA.Manuel Lerman, James Henry Schmerl & Robert Irving Soare (eds.) - 1981 - New York: Springer Verlag.
  38.  16
    Binary Relational Structures Having Only Countably Many Nonisomorphic Substructures.Dugald Macpherson & James H. Schmerl - 1991 - Journal of Symbolic Logic 56 (3):876-884.
  39.  10
    Acceptable colorings of indexed hyperspaces.James H. Schmerl - 2018 - Journal of Symbolic Logic 83 (4):1644-1666.
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  40.  37
    A generalization of Sierpiński's paradoxical decompositions: Coloring semialgebraic grids.James H. Schmerl - 2012 - Journal of Symbolic Logic 77 (4):1165-1183.
    A structure A = (A; E₀, E₁ , . . . , ${E_{n - 2}}$) is an n-grid if each E i is an equivalence relation on A and whenver X and Y are equivalence classes of, repectively, distinct E i and E j , then X ∩ Y is finite. A coloring χ : A → n is acceptable if whenver X is an equivalence class of E i , then {ϰ Є X: χ(ϰ) = i} is finite. If (...)
    Direct download (6 more)  
     
    Export citation  
     
    Bookmark  
  41.  63
    A reflection principle and its applications to nonstandard models.James H. Schmerl - 1995 - Journal of Symbolic Logic 60 (4):1137-1152.
  42.  21
    A weakly definable type which is not definable.James H. Schmerl - 1993 - Archive for Mathematical Logic 32 (6):463-468.
    For each completion of Peano Arithmetic there is a weakly definable type which is not definable.
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  43.  11
    Cofinal elementary extensions.James H. Schmerl - 2014 - Mathematical Logic Quarterly 60 (1-2):12-20.
    We investigate some properties of ordered structures that are related to their having cofinal elementary extensions. Special attention is paid to models of some very weak fragments of Peano Arithmetic.
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  44.  54
    Decidability and finite axiomatizability of theories of ℵ0-categorical partially ordered sets.James H. Schmerl - 1981 - Journal of Symbolic Logic 46 (1):101 - 120.
    Every ℵ 0 -categorical partially ordered set of finite width has a finitely axiomatizable theory. Every ℵ 0 -categorical partially ordered set of finite weak width has a decidable theory. This last statement constitutes a major portion of the complete (with three exceptions) characterization of those finite partially ordered sets for which any ℵ 0 -categorical partially ordered set not embedding one of them has a decidable theory.
    Direct download (7 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  45.  18
    Difference Sets and Recursion Theory.James H. Schmerl - 1998 - Mathematical Logic Quarterly 44 (4):515-521.
    There is a recursive set of natural numbers which is the difference set of some recursively enumerable set but which is not the difference set of any recursive set.
    Direct download  
     
    Export citation  
     
    Bookmark  
  46.  13
    Deciding the chromatic numbers of algebraic hypergraphs.James H. Schmerl - 2018 - Journal of Symbolic Logic 83 (1):128-145.
    For each infinite cardinalκ, the set of algebraic hypergraphs having chromatic number no larger thanκis decidable.
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  47.  25
    Elementary extensions of models of set theory.James H. Schmerl - 2000 - Archive for Mathematical Logic 39 (7):509-514.
    A theorem of Enayat's concerning models of ZFC which had been proved using several different additional set-theoretical hypotheses is shown here to be absolute.
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  48.  20
    Graph Coloring and Reverse Mathematics.James H. Schmerl - 2000 - Mathematical Logic Quarterly 46 (4):543-548.
    Improving a theorem of Gasarch and Hirst, we prove that if 2 ≤ k ≤ m < ω, then the following is equivalent to WKL0 over RCA0 Every locally k-colorable graph is m-colorable.
    Direct download  
     
    Export citation  
     
    Bookmark   1 citation  
  49.  18
    Minimal elementary end extensions.James H. Schmerl - 2017 - Archive for Mathematical Logic 56 (5-6):541-553.
    Suppose that M⊧PA\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal M}\models \mathsf{PA}$$\end{document} and X⊆P\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathfrak X} \subseteq {\mathcal P}$$\end{document}. If M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal M}$$\end{document} has a finitely generated elementary end extension N≻endM\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal N}\succ _\mathsf{end} {\mathcal M}$$\end{document} such that {X∩M:X∈Def}=X\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{X \cap M : X \in {{\mathrm{Def}}}\} = (...)
    No categories
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark  
  50.  39
    Partitioning large vector spaces.James H. Schmerl - 2003 - Journal of Symbolic Logic 68 (4):1171-1180.
1 — 50 / 60