We prove that compactness is equivalent to the amalgamation property, provided the occurrence number of the logic is smaller than the first uncountable measurable cardinal. We also relate compactness to the existence of certain regular ultrafilters related to the logic and develop a general theory of compactness and its consequences. We also prove some combinatorial results of independent interest.
The classical Feferman–Vaught Theorem for First Order Logic explains how to compute the truth value of a first order sentence in a generalized product of first order structures by reducing this computation to the computation of truth values of other first order sentences in the factors and evaluation of a monadic second order sentence in the index structure. This technique was later extended by Läuchli, Shelah and Gurevich to monadic second order logic. The technique has wide applications in decidability and (...) definability theory. Here we give a unified presentation, including some new results, of how to use the Feferman–Vaught Theorem, and some new variations thereof, algorithmically in the case of Monadic Second Order Logic MSOL . We then extend the technique to graph polynomials where the range of the summation of the monomials is definable in MSOL . Here the Feferman–Vaught Theorem for these polynomials generalizes well known splitting theorems for graph polynomials. Again, these can be used algorithmically. Finally, we discuss extensions of MSOL for which the Feferman–Vaught Theorem holds as well. (shrink)
We investigate the expressive power of second-order logic over finite structures, when two limitations are imposed. Let SAA ) be the set of second-order formulas such that the arity of the relation variables is bounded by k and the number of alternations of second-order quantification is bounded by n . We show that this imposes a proper hierarchy on second-order logic, i.e. for every k , n there are problems not definable in AA but definable in AA for some c (...) 1 , d 1 . The method to show this is to introduce the set AUTOSAT of formulas in F which satisfy themselves. We study the complexity of this set for various fragments of second-order loeic. For first-order logic FOL with unbounded alternation of quantifiers AUTOSAT is PSpace complete. For first-order logic FOL n with alternation of quantifiers bounded by n , AUTOSAT is definable in AA . AUTOSAT) is definable in AA for some c 1 , d 1. (shrink)
Graph polynomials are graph parameters invariant under graph isomorphisms which take values in a polynomial ring with a fixed finite number of indeterminates. We study graph polynomials from a model theoretic point of view. In this paper we distinguish between the graph theoretic (semantic) and the algebraic (syntactic) meaning of graph polynomials. Graph polynomials appear in the literature either as generating functions, as generalized chromatic polynomials, or as polynomials derived via determinants of adjacency or Laplacian matrices. We show that these (...) forms are mutually incomparable, and propose a unified framework based on definability in Second Order Logic. We show that this comprises virtually all examples of graph polynomials with a fixed finite set of indeterminates. Finally we show that the location of zeros and stability of graph polynomials is not a semantic property. The paper emphasizes a model theoretic view. It gives a unified exposition of classical results in algebraic combinatorics together with new and some of our previously obtained results scattered in the graph theoretic literature. (shrink)
We study the effects of Vopěnka's principle on properties of model theoretic logics. We show that Vopěnka's principle is equivalent to the assumption that every finitely generated logic has a compact cardinal. We show also that it is equivalent to the assumption that every such logic has a global Hanf number.
We show that the spectrum of a sentence ϕ in Counting Monadic Second Order Logic (CMSOL) using one binary relation symbol and finitely many unary relation symbols, is ultimately periodic, provided all the models of ϕ are of clique width at most k, for some fixed k. We prove a similar statement for arbitrary finite relational vocabularies τ and a variant of clique width for τ-structures. This includes the cases where the models of ϕ are of tree width at most (...) k. For the case of bounded tree-width, the ultimate periodicity is even proved for Guarded Second Order Logic GSOL. We also generalize this result to many-sorted spectra, which can be viewed as an analogue of Parikh's Theorem on context-free languages, and its analogues for context-free graph grammars due to Habel and Courcelle. Our work was inspired by Gurevich and Shelah (2003), who showed ultimate periodicity of the spectrum for sentences of Monadic Second Order Logic where only finitely many unary predicates and one unary function are allowed. This restriction implies that the models are all of tree width at most 2, and hence it follows from our result. (shrink)
We show that the spectrum of a sentence φ in Counting Monadic Second Order Logic using one binary relation symbol and finitely many unary relation symbols, is ultimately periodic, provided all the models of φ are of clique width at most k, for some fixed k. We prove a similar statement for arbitrary finite relational vocabularies τ and a variant of clique width for τ-structures. This includes the cases where the models of φ are of tree width at most k. (...) For the case of bounded tree-width, the ultimate periodicity is even proved for Guarded Second Order Logic GSOL. We also generalize this result to many-sorted spectra, which can be viewed as an analogue of Parikh’s Theorem on context-free languages, and its analogues for context-free graph grammars due to Habel and Courcelle. Our work was inspired by Gurevich and Shelah, who showed ultimate periodicity of the spectrum for sentences of Monadic Second Order Logic where only finitely many unary predicates and one unary function are allowed. This restriction implies that the models are all of tree width at most 2, and hence it follows from our result. (shrink)
Finitary sketches, i.e., sketches with finite-limit and finite-colimit specifications, are proved to be as strong as geometric sketches, i.e., sketches with finite-limit and arbitrary colimit specifications. Categories sketchable by such sketches are fully characterized in the infinitary first-order logic: they are axiomatizable by σ-coherent theories, i.e., basic theories using finite conjunctions, countable disjunctions, and finite quantifications. The latter result is absolute; the equivalence of geometric and finitary sketches requires (in fact, is equivalent to) the non-existence of measurable cardinals.