We present a streamlined axiom system of special relativity in first-order logic. From this axiom system we "derive" an axiom system of general relativity in two natural steps. We will also see how the axioms of special relativity transform into those of general relativity. This way we hope to make general relativity more accessible for the non-specialist.
The aim of this paper is to present a new logic-based understanding of the connection between classical kinematics and relativistic kinematics. We show that the axioms of special relativity can be interpreted in the language of classical kinematics. This means that there is a logical translation function from the language of special relativity to the language of classical kinematics which translates the axioms of special relativity into consequences of classical kinematics. We will also show that if we distinguish a class (...) of observers in special relativity and exclude the non-slower-than light observers from classical kinematics by an extra axiom, then the two theories become definitionally equivalent. Furthermore, we show that classical kinematics is definitionally equivalent to classical kinematics with only slower-than-light inertial observers, and hence by transitivity of definitional equivalence that special relativity theory extended with “Ether” is definitionally equivalent to classical kinematics. So within an axiomatic framework of mathematical logic, wee xplicitly show that the transition from classical kinematics to relativistic kinematics is the knowledge acquisition that there is no “Ether”, accompanied by a redefinition of the concepts of time and space. (shrink)
For simplicity, most of the literature introduces the concept of definitional equivalence only for disjoint languages. In a recent paper, Barrett and Halvorson introduce a straightforward generalization to non-disjoint languages and they show that their generalization is not equivalent to intertranslatability in general. In this paper, we show that their generalization is not transitive and hence it is not an equivalence relation. Then we introduce another formalization of definitional equivalence due to Andréka and Németi which is equivalent to the Barrett–Halvorson (...) generalization in the case of disjoint languages. We show that the Andréka–Németi generalization is the smallest equivalence relation containing the Barrett–Halvorson generalization and it is equivalent to intertranslatability, which is another definition for definitional equivalence, even for non-disjoint languages. Finally, we investigate which definitions for definitional equivalences remain equivalent when we generalize them for theories in non-disjoint languages. (shrink)
We study the foundation of space-time theory in the framework of first-order logic (FOL). Since the foundation of mathematics has been successfully carried through (via set theory) in FOL, it is not entirely impossible to do the same for space-time theory (or relativity). First we recall a simple and streamlined FOL-axiomatization Specrel of special relativity from the literature. Specrel is complete with respect to questions about inertial motion. Then we ask ourselves whether we can prove the usual relativistic properties of (...) accelerated motion (e.g., clocks in acceleration) in Specrel. As it turns out, this is practically equivalent to asking whether Specrel is strong enough to “handle” (or treat) accelerated observers. We show that there is a mathematical principle called induction (IND) coming from real analysis which needs to be added to Specrel in order to handle situations involving relativistic acceleration. We present an extended version AccRel of Specrel which is strong enough to handle accelerated motion, in particular, accelerated observers. Among others, we show that~the Twin Paradox becomes provable in AccRel, but it is not provable without IND. (shrink)
In the literature, there have been several methods and definitions for working out whether two theories are “equivalent” or not. In this article, we do something subtler. We provide a means to measure distances between formal theories. We introduce two natural notions for such distances. The first one is that of axiomatic distance, but we argue that it might be of limited interest. The more interesting and widely applicable notion is that of conceptual distance which measures the minimum number of (...) concepts that distinguish two theories. For instance, we use conceptual distance to show that relativistic and classical kinematics are distinguished by one concept only. (shrink)
In 1978, Yu. F. Borisov presented an axiom system using a few basic assumptions and four explicit axioms, the fourth being a formulation of the relativity principle; and he demonstrated that this axiom system had (up to choice of units) only two models: a relativistic one in which worldview transformations are Poincaré transformations and a classical one in which they are Galilean. In this paper, we reformulate Borisov’s original four axioms within an intuitively simple, but strictly formal, first-order logic framework, (...) and convert his basic background assumptions into explicit axioms. Instead of assuming that the structure of physical quantities is the field of real numbers, we assume only that they form an ordered field. This allows us to investigate how Borisov’s theorem depends on the structure of quantities. We demonstrate (as our main contribution) how to construct Euclidean, Galilean, and Poincaré models of Borisov’s axiom system over every non-Archimedean field. We also demonstrate the existence of an infinite descending chain of models and transformation groups in each of these three cases, something that is not possible over Archimedean fields. As an application, we note that there is a model of Borisov’s axioms that satisfies the relativity principle, and in which the worldview transformations are Euclidean isometries. Over the field of reals it is easy to eliminate this model using natural axioms concerning time’s arrow and the absence of instantaneous motion. In the case of non-Archimedean fields, however, the Euclidean isometries appear intrinsically as worldview transformations in models of Borisov’s axioms and neither the assumption of time’s arrow, nor the rejection of instantaneous motion, can eliminate them. (shrink)
For simplicity, most of the literature introduces the concept of definitional equivalence only to languages with disjoint signatures. In a recent paper, Barrett and Halvorson introduce a straightforward generalization to languages with non-disjoint signatures and they show that their generalization is not equivalent to intertranslatability in general. In this paper,we show that their generalization is not transitive and hence it is not an equivalence relation. Then we introduce the Andréka and Németi generalization as one of the many equivalent formulations for (...) languages with disjoint signatures. We show that the Andréka-Németi generalization is the smallest equivalence relation containing the Barrett–Halvorson generalization and it is equivalent to intertranslatability even for languages with non-disjoint signatures. Finally,we investigate which definitions for definitional equivalences remain equivalent when we generalize them for theories with non-disjoint signatures. (shrink)
A part of relativistic dynamics is axiomatized by simple and purely geometrical axioms formulated within first-order logic. A geometrical proof of the formula connecting relativistic and rest masses of bodies is presented, leading up to a geometric explanation of Einstein’s famous E = mc 2. The connection of our geometrical axioms and the usual axioms on the conservation of mass, momentum and four-momentum is also investigated.
Thought experiments are widely used in the informal explanation of Relativity Theories; however, they are not present explicitly in formalized versions of Relativity Theory. In this paper, we present an axiom system of Special Relativity which is able to grasp thought experiments formally and explicitly. Moreover, using these thought experiments, we can provide an explicit definition of relativistic mass based only on kinematical concepts and we can geometrically prove the Mass Increase Formula in a natural way, without postulates of conservation (...) of mass and momentum. (shrink)
We present three natural but distinct formalisations of Einstein’s special principle of relativity, and demonstrate the relationships between them. In particular, we prove that they are logically distinct, but that they can be made equivalent by introducing a small number of additional, intuitively acceptable axioms.
The aim of this paper is to provide a logic-based conceptual analysis of the twin paradox (TwP) theorem within a first-order logic framework. A geometrical characterization of TwP and its variants is given. It is shown that TwP is not logically equivalent to the assumption of the slowing down of moving clocks, and the lack of TwP is not logically equivalent to the Newtonian assumption of absolute time. The logical connection between TwP and a symmetry axiom of special relativity is (...) also studied. (shrink)
In natural sciences, the most interesting and relevant questions are the so-called why-questions. There are several different approaches to why-questions and explanations in the literature, however, most of the literature deals with why-questions about particular events, such as ``Why did Adam eat the apple?''. Even the best known theory of explanation, Hempel's covering law model, is designed for explaining particular events. Here we only deal with purely theoretical why-questions about general phenomena of physics, for instance ``Why can no observer move (...) faster than light?'' or ``Why are Kepler's laws valid?''. Here we are not going to develop a whole new theory of why-questions in physics. We will just touch upon some ideas and examples relevant to our subject. (shrink)
This book features more than 20 papers that celebrate the work of Hajnal Andréka and István Németi. It illustrates an interaction between developing and applying mathematical logic. The papers offer new results as well as surveys in areas influenced by these two outstanding researchers. They also provide details on the after-life of some of their initiatives. Computer science connects the papers in the first part of the book. The second part concentrates on algebraic logic. It features a range of papers (...) that hint at the intricate many-way connections between logic, algebra, and geometry. The third part explores novel applications of logic in relativity theory, philosophy of logic, philosophy of physics and spacetime, and methodology of science. They include such exciting subjects as time travelling in emergent spacetime. The short autobiographies of Hajnal Andréka and István Németi at the end of the book describe an adventurous journey from electric engineering and Maxwell’s equations to a complex system of computer programs for designing Hungary’s electric power system, to exploring and contributing deep results to Tarskian algebraic logic as the deepest core theory of such questions, then on to applications of the results in such exciting new areas as relativity theory in order to rejuvenate logic itself. (shrink)
Motivation and perspective for an exciting new research direction interconnecting logic, spacetime theory, relativity--including such revolutionary areas as black hole physics, relativistic computers, new cosmology--are presented in this paper. We would like to invite the logician reader to take part in this grand enterprise of the new century. Besides general perspective and motivation, we present initial results in this direction.