4 found
Order:
  1.  25
    Von Neumann coordinatization is not first-order.Friedrich Wehrung - 2006 - Journal of Mathematical Logic 6 (01):1-24.
    A lattice L is coordinatizable, if it is isomorphic to the lattice L of principal right ideals of some von Neumann regular ring R. This forces L to be complemented modular. All known sufficient conditions for coordinatizability, due first to von Neumann, then to Jónsson, are first-order. Nevertheless, we prove that coordinatizability of lattices is not first-order, by finding a non-coordinatizable lattice K with a coordinatizable countable elementary extension L. This solves a 1960 problem of Jónsson. We also prove that (...)
    Direct download (7 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  2.  65
    Boolean universes above Boolean models.Friedrich Wehrung - 1993 - Journal of Symbolic Logic 58 (4):1219-1250.
    We establish several first- or second-order properties of models of first-order theories by considering their elements as atoms of a new universe of set theory and by extending naturally any structure of Boolean model on the atoms to the whole universe. For example, complete f-rings are "boundedly algebraically compact" in the language $(+,-,\cdot,\wedge,\vee,\leq)$ , and the positive cone of a complete l-group with infinity adjoined is algebraically compact in the language (+, ∨, ≤). We also give an example with any (...)
    Direct download (8 more)  
     
    Export citation  
     
    Bookmark  
  3.  8
    From noncommutative diagrams to anti-elementary classes.Friedrich Wehrung - 2020 - Journal of Mathematical Logic 21 (2):2150011.
    Anti-elementarity is a strong way of ensuring that a class of structures, in a given first-order language, is not closed under elementary equivalence with respect to any infinitary language of the...
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  4.  10
    Nonabsoluteness of elementary embeddings.Friedrich Wehrung - 1989 - Journal of Symbolic Logic 54 (3):774-778.
    Ifκis a measurable cardinal, let us say that a measure onκis aκ-complete nonprincipal ultrafilter onκ. IfUis a measure onκ, letjUbe the canonical elementary embedding ofVinto its Ultrapower UltU. Ifxis a set, say thatUmovesxwhenjU≠x; say thatκmovesxwhen some measure onκmovesx. Recall Kunen's lemma : “Every ordinal is moved only by finitely many measurable cardinals.” Kunen's proof and Fleissner's proof are essentially nonconstructive.The following proposition can be proved by using elementary facts about iterated ultrapowers.Proposition.Let ‹Un: n ∈ ω› be a sequence of measures (...)
    Direct download (8 more)  
     
    Export citation  
     
    Bookmark