Order:
Disambiguations
Fred C. Boogerd [5]Fred Boogerd [2]
See also
Fred C. Boogerd
VU University Amsterdam
  1.  42
    Emergence and its place in nature: a case study of biochemical networks.Fred C. Boogerd, Frank J. Bruggeman, Robert C. Richardson, Achim Stephan & Hans V. Westerhoff - 2005 - Synthese 145 (1):131-164.
    We will show that there is a strong form of emergence in cell biology. Beginning with C.D. Broad’s classic discussion of emergence, we distinguish two conditions sufficient for emergence. Emergence in biology must be compatible with the thought that all explanations of systemic properties are mechanistic explanations and with their sufficiency. Explanations of systemic properties are always in terms of the properties of the parts within the system. Nonetheless, systemic properties can still be emergent. If the properties of the components (...)
    Direct download  
     
    Export citation  
     
    Bookmark   54 citations  
  2.  85
    Systems Biology: Philosophical Foundations.Fred C. Boogerd, Frank J. Bruggeman, Jan-Hendrik S. Hofmeyr & Hans V. Westerhoff (eds.) - 2007 - Boston: Elsevier.
    Systems biology is a vigorous and expanding discipline, in many ways a successor to genomics and perhaps unprecendented in its combination of biology with a ...
    Direct download  
     
    Export citation  
     
    Bookmark   18 citations  
  3.  49
    Towards philosophical foundations of Systems Biology: introduction.Fred C. Boogerd, Frank J. Bruggeman, Jan-Hendrik S. Hofmeyr & Hans V. Westerhoff - 2007 - In Fred C. Boogerd, Frank J. Bruggeman, Jan-Hendrik S. Hofmeyr & Hans V. Westerhoff (eds.), Systems Biology: Philosophical Foundations. Elsevier.
  4.  89
    Mechanistic Explanations and Models in Molecular Systems Biology.Fred C. Boogerd, Frank J. Bruggeman & Robert C. Richardson - 2013 - Foundations of Science 18 (4):725-744.
    Mechanistic models in molecular systems biology are generally mathematical models of the action of networks of biochemical reactions, involving metabolism, signal transduction, and/or gene expression. They can be either simulated numerically or analyzed analytically. Systems biology integrates quantitative molecular data acquisition with mathematical models to design new experiments, discriminate between alternative mechanisms and explain the molecular basis of cellular properties. At the heart of this approach are mechanistic models of molecular networks. We focus on the articulation and development of mechanistic (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  5. Inter-level relations in computer science, biology, and psychology.Fred Boogerd, Frank Bruggeman, Catholijn Jonker, Huib Looren de Jong, Allard Tamminga, Jan Treur, Hans Westerhoff & Wouter Wijngaards - 2002 - Philosophical Psychology 15 (4):463–471.
    Investigations into inter-level relations in computer science, biology and psychology call for an *empirical* turn in the philosophy of mind. Rather than concentrate on *a priori* discussions of inter-level relations between 'completed' sciences, a case is made for the actual study of the way inter-level relations grow out of the developing sciences. Thus, philosophical inquiries will be made more relevant to the sciences, and, more importantly, philosophical accounts of inter-level relations will be testable by confronting them with what really happens (...)
    Direct download (9 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  6.  33
    Afterthoughts as foundations for systems biology.Fred C. Boogerd, Frank J. Bruggeman, Jan-Hendrik S. Hofmeyr & Hans V. Westerhoff - 2007 - In Fred C. Boogerd, Frank J. Bruggeman, Jan-Hendrik S. Hofmeyr & Hans V. Westerhoff (eds.), Systems Biology: Philosophical Foundations. Elsevier.
  7. Macromolecular intelligence in microorganisms. [REVIEW]Frank J. Bruggeman, Wally C. Van Heeswijk, Fred Boogerd & Hans V. Westerhoff - 2000 - Biological Chemistry 381:965-972.
    Biochemistry and molecular biology have been focusing on the structural, catalytic, and regulatory proper- ties of individual macromolecules from the perspective of clarifying the mechanisms of metabolism and gene expression. Complete genomes of ‘primitive’ living organisms seem to be substantially larger than necessary for metabolism and gene expression alone. This is in line with the findings of silent phenotypes for supposedly important genes, apparent redundancy of functions, and variegated networks of signal transduction and transcription factors. Here we propose that evolutionary (...)
     
    Export citation  
     
    Bookmark