We study the degrees of unsolvability of sets which are cohesive . We answer a question raised by the first author in 1972 by showing that there is a cohesive set A whose degree a satisfies a' = 0″ and hence is not high. We characterize the jumps of the degrees of r-cohesive sets, and we show that the degrees of r-cohesive sets coincide with those of the cohesive sets. We obtain analogous results for strongly hyperimmune and strongly hyperhyperimmune sets (...) in place of r-cohesive and cohesive sets, respectively. We show that every strongly hyperimmune set whose degree contains either a Boolean combination of ∑2 sets or a 1-generic set is of high degree. We also study primitive recursive analogues of these notions and in this case we characterize the corresponding degrees exactly. MSC: 03D30, 03D55. (shrink)
We study and compare two combinatorial lowness notions: strong jump-traceability and well-approximability of the jump, by strengthening the notion of jump-traceability and super-lowness for sets of natural numbers. A computable non-decreasing unbounded function h is called an order function. Informally, a set A is strongly jump-traceable if for each order function h, for each input e one may effectively enumerate a set Te of possible values for the jump JA, and the number of values enumerated is at most h. A′ (...) is well-approximable if can be effectively approximated with less than h changes at input x, for each order function h. We prove that there is a strongly jump-traceable set which is not computable, and that if A′ is well-approximable then A is strongly jump-traceable. For r.e. sets, the converse holds as well. We characterize jump-traceability and strong jump-traceability in terms of Kolmogorov complexity. We also investigate other properties of these lowness properties. (shrink)
We say that A≤LRB if every B-random set is A-random with respect to Martin–Löf randomness. We study this relation and its interactions with Turing reducibility, classes, hyperimmunity and other recursion theoretic notions.
We investigate dependence of recursively enumerable graphs on the equality relation given by a specific r.e. equivalence relation on ω. In particular we compare r.e. equivalence relations in terms of graphs they permit to represent. This defines partially ordered sets that depend on classes of graphs under consideration. We investigate some algebraic properties of these partially ordered sets. For instance, we show that some of these partial ordered sets possess atoms, minimal and maximal elements. We also fully describe the isomorphism (...) types of some of these partial orders. (shrink)
An infinite binary sequence X is Kolmogorov–Loveland random if there is no computable non-monotonic betting strategy that succeeds on X in the sense of having an unbounded gain in the limit while betting successively on bits of X. A sequence X is KL-stochastic if there is no computable non-monotonic selection rule that selects from X an infinite, biased sequence.One of the major open problems in the field of effective randomness is whether Martin-Löf randomness is the same as KL-randomness. Our first (...) main result states that KL-random sequences are close to Martin-Löf random sequences in so far as every KL-random sequence has arbitrarily dense subsequences that are Martin-Löf random. A key lemma in the proof of this result is that for every effective split of a KL-random sequence at least one of the halves is Martin-Löf random. However, this splitting property does not characterize KL-randomness; we construct a sequence that is not even computably random such that every effective split yields two subsequences that are 2-random. Furthermore, we show for any KL-random sequence A that is computable in the halting problem that, first, for any effective split of A both halves are Martin-Löf random and, second, for any computable, nondecreasing, and unbounded function g and almost all n, the prefix of A of length n has prefix-free Kolmogorov complexity at least n−g. Again, the latter property does not characterize KL-randomness, even when restricted to left-r.e. sequences; we construct a left-r.e. sequence that has this property but is not KL-stochastic and, in fact, is not even Mises–Wald–Church stochastic.Turning our attention to KL-stochasticity, we construct a non-empty class of KL-stochastic sequences that are not weakly 1-random; by the usual basis theorems we obtain such sequences that in addition are left-r.e., are low, or are of hyperimmune-free degree.Our second main result asserts that every KL-stochastic sequence has effective dimension 1, or equivalently, a sequence cannot be KL-stochastic if it has infinitely many prefixes that can be compressed by a factor of α<1. This improves on a result by Muchnik, who has shown that were they to exist, such compressible prefixes could not be found effectively. (shrink)
We give several characterizations of Schnorr trivial sets, including a new lowness notion for Schnorr triviality based on truth-table reducibility. These characterizations allow us to see not only that some natural classes of sets, including maximal sets, are composed entirely of Schnorr trivials, but also that the Schnorr trivial sets form an ideal in the truth-table degrees but not the weak truth-table degrees. This answers a question of Downey, Griffiths and LaForte.
We show that van Lambalgen's Theorem fails with respect to recursive randomness and Schnorr randomness for some real in every high degree and provide a full characterization of the Turing degrees for which van Lambalgen's Theorem can fail with respect to Kurtz randomness. However, we also show that there is a recursively random real that is not Martin-Löf random for which van Lambalgen's Theorem holds with respect to recursive randomness.
This paper considers reductions between types of numberings; these reductions preserve the Rogers Semilattice of the numberings reduced and also preserve the number of minimal and positive degrees in their semilattice. It is shown how to use these reductions to simplify some constructions of specific semilattices. Furthermore, it is shown that for the basic types of numberings, one can reduce the left-r.e. numberings to the r.e. numberings and the k-r.e. numberings to the k+1-r.e. numberings; all further reductions are obtained by (...) concatenating these reductions. (shrink)
The task of computing a function F with the help of an oracle X can be viewed as a search problem where the cost measure is the number of queries to X. We ask for the minimal number that can be achieved by a suitable choice of X and call this quantity the query complexity of F. This concept is suggested by earlier work of Beigel, Gasarch, Gill, and Owings on “Bounded query classes”. We introduce a fault tolerant version and (...) relate it with Ulam's game. For many natural classes of functions F we obtain tight upper and lower bounds on the query complexity of F. Previous results like the Nonspeedup Theorem and the Cardinality Theorem appear in a wider perspective. (shrink)
A real x is -Kurtz random if it is in no closed null set . We show that there is a cone of -Kurtz random hyperdegrees. We characterize lowness for -Kurtz randomness as being -dominated and -semi-traceable.
In this paper, the notions of Fα-categorical and Gα-categorical structures are introduced by choosing the isomorphism such that the function itself or its graph sits on the α-th level of the Ershov hierarchy, respectively. Separations obtained by natural graphs which are the disjoint unions of countably many finite graphs. Furthermore, for size-bounded graphs, an easy criterion is given to say when it is computable-categorical and when it is only G2-categorical; in the latter case it is not Fα-categorical for any recursive (...) ordinal α. (shrink)
A recursive enumerator for a function h is an algorithm f which enumerates for an input x finitely many elements including h(x), f is a k(n)-enumerator if for every input x of length n, h(x) is among the first k(n) elements enumerated by f. If there is a k(n)-enumerator for h then h is called k(n)-enumerable. We also consider enumerators which are only A-recursive for some oracle A. We determine exactly how hard it is to enumerate the Kolmogorov function, which (...) assigns to each string x its Kolmogorov complexity: • For every underlying universal machine U, there is a constant a such that C is k(n)-enumerable only if k(n) ≥ n/a for almost all n. • For any given constant k, the Kolmogorov function is k-enumerable relative to an oracle A if and only if A is at least as hard as the halting problem. • There exists an r.e., Turing-incomplete set A such for every non-decreasing and unbounded recursive function k, the Kolmogorov function is k(n)-enumerable relative to A. The last result is obtained by using a relativizable construction for a nonrecursive set A relative to which the prefix-free Kolmogorov complexity differs only by a constant from the unrelativized prefix-free Kolmogorov complexity. Although every 2-enumerator for C is Turing hard for K, we show that reductions must depend on the specific choice of the 2-enumerator and there is no bound on the quantity of their queries. We show our negative results even for strong 2-enumerators as an oracle where the querying machine for any x gets directly an explicit list of all hypotheses of the enumerator for this input. The limitations are very general and we show them for any recursively bounded function g: • For every Turing reduction M and every non-recursive set B, there is a strong 2-enumerator f for g such that M does not Turing reduce B to f. • For every non-recursive set B, there is a strong 2-enumerator f for g such that B is not wtt-reducible to f. Furthermore, we deal with the resource-bounded case and give characterizations for the class ${\rm S}_{2}^{{\rm P}}$ introduced by Canetti and independently Russell and Sundaram and the classes PSPACE, EXP. • ${\rm S}_{2}^{{\rm P}}$ is the class of all sets A for which there is a polynomially bounded function g such that there is a polynomial time tt-reduction which reduces A to every strong 2-enumerator for g. • PSPACE is the class of all sets A for which there is a polynomially bounded function g such that there is a polynomial time Turing reduction which reduces A to every strong 2-enumerator for g. Interestingly, g can be taken to be the Kolmogorov function for the conditional space bounded Kolmogorov complexity. • EXP is the class of all sets A for which there is a polynomially bounded function g and a machine M which witnesses A ∈ PSPACEf for all strong 2-enumerators f for g. Finally, we show that any strong O(log n)-enumerator for the conditional space bounded Kolmogorov function must be PSPACE-hard if P = NP. (shrink)
Most theories of learning consider inferring a function f from either observations about f or, questions about f. We consider a scenario whereby the learner observes f and asks queries to some set A. If I is a notion of learning then I[A] is the set of concept classes I-learnable by an inductive inference machine with oracle A. A and B are I-equivalent if I[A] = I[B]. The equivalence classes induced are the degrees of inferability. We prove several results about (...) when these degrees are trivial, and when the degrees are omniscient. (shrink)
We compare various notions of algorithmic randomness. First we consider relativized randomness. A set is n-random if it is Martin-Löf random relative to ∅. We show that a set is 2-random if and only if there is a constant c such that infinitely many initial segments x of the set are c-incompressible: C ≥ |x|-c. The ‘only if' direction was obtained independently by Joseph Miller. This characterization can be extended to the case of time-bounded C-complexity. Next we prove some results (...) on lowness. Among other things, we characterize the 2-random sets as those 1-random sets that are low for Chaitin's Ω. Also, 2-random sets form minimal pairs with 2-generic sets. The r.e. low for Ω sets coincide with the r.e. K-trivial ones. Finally we show that the notions of Martin-Löf randomness, recursive randomness, and Schnorr randomness can be separated in every high degree while the same notions coincide in every non-high degree. We make some remarks about hyperimmune-free and PA-complete degrees. (shrink)
Inductive inference considers two types of queries: Queries to a teacher about the function to be learned and queries to a non-recursive oracle. This paper combines these two types — it considers three basic models of queries to a teacher (QEX[Succ], QEX[ The results for each of these three models of query-inference are the same: If an oracle is omniscient for query-inference then it is already omniscient for EX. There is an oracle of trivial EX-degree, which allows nontrivial query-inference. Furthermore, (...) queries to a teacher cannot overcome differences between oracles and the query-inference degrees are a proper refinement of the EX-degrees. In the case of finite learning, the query-inference degrees coincide with the Turing degrees. Furthermore oracles can not close the gap between the different types of queries to a teacher. (shrink)
Khoussainov and Nerode [14] posed various open questions on model-theoretic properties of automatic structures. In this work we answer some of these questions by showing the following results: There is an uncountably categorical but not countably categorical theory for which only the prime model is automatic; There are complete theories with exactly 3,4,5,…3,4,5,… countable models, respectively, and every countable model is automatic; There is a complete theory for which exactly 2 models have an automatic presentation; If LOGSPACE=PLOGSPACE=P then there is (...) an uncountably categorical but not countably categorical theory for which the prime model does not have an automatic presentation but all the other countable models are automatic; There is a complete theory with countably many countable models for which the saturated model has an automatic presentation but the prime model does not have one. (shrink)
For a fixed set A, the number of queries to A needed in order to decide a set S is a measure of S's complexity. We consider the complexity of certain sets defined in terms of A: $ODD^A_n = \{(x_1, \dots ,x_n): {\tt\#}^A_n(x_1, \dots, x_n) \text{is odd}\}$ and, for m ≥ 2, $\text{MOD}m^A_n = \{(x_1, \dots ,x_n):{\tt\#}^A_n(x_1, \dots ,x_n) \not\equiv 0 (\text{mod} m)\},$ where ${\tt\#}^A_n(x_1, \dots ,x_n) = A(x_1)+\cdots+A(x_n)$ . (We identify A(x) with χ A (x), where χ A is (...) the characteristic function of A.) If A is a nonrecursive semirecursive set or if A is a jump, we give tight bounds on the number of queries needed in order to decide ODD A n and $\text{MOD}m^A_n: \bullet\text{ODD}^A_n$ can be decided with n parallel queries to A, but not with n - 1. $\bullet \text{ODD}^A_n$ can be decided with $\lceil log(n + 1)\rceil$ sequential queries to A but not with $\lceil log(n + 1)\rceil - 1. \bullet\text{MOD}m^A_n$ can be decided with $\lceil n/m\rceil + \lfloor n/m\rfloor$ parallel queries to A but not with $\lceil n/m\rceil + \lfloor n/m\rfloor - 1. \bullet\text{MOD}m^A_n$ can be decided with $\lceil log(\lceil n/m\rceil + \lfloor n/m\rfloor + 1)\rceil$ sequential queries to A but not with $\lceil log(\lceil n/m\rceil + \lfloor n/m\rfloor + 1)\rceil - 1$ . The lower bounds above hold for nonrecursive recursively enumerable sets A as well. (Interestingly, the lower bounds for recursively enumerable sets follow by a general result from the lower bounds for semirecursive sets.) In particular, every nonzero truth-table degree contains a set A such that ODD A n cannot be decided with n - 1 parallel queries to A. Since every truth-table degree also contains a set B such that ODD B n can be decided with one query to B, a set's query complexity depends more on its structure than on its degree. For a fixed set A, $Q(n,A) = \{S: S \text{can be decided with n sequential queries to} A\},\\Q_\parallel(n, A) = \{S: S \text{can be decided with n parallel queries to} A\}.$ We show that if A is semirecursive or recursively enumerable, but is not recursive, then these classes form non-collapsing hierarchies: $\bullet Q(0,A) \subset Q(1,A) \subset Q(2,A) \subset\cdots\\ \bullet Q_\parallel(0, A) \subset Q_\parallel(1, A) \subset Q_\parallel(2,A) \subset\cdots$ The same is true if A is a jump. (shrink)
The following theorems on the structure inside nonrecursive truth-table degrees are established: Dëgtev's result that the number of bounded truth-table degrees inside a truth-table degree is at least two is improved by showing that this number is infinite. There are even infinite chains and antichains of bounded truth-table degrees inside every truth-table degree. The latter implies an affirmative answer to the following question of Jockusch: does every truth-table degree contain an infinite antichain of many-one degrees? Some but not all truth-table (...) degrees have a least bounded truth-table degree. The technique to construct such a degree is used to solve an open problem of Beigel, Gasarch and Owings: there are Turing degrees (constructed as hyperimmune-free truth-table degrees) which consist only of 2-subjective sets and therefore do not contain any objective set. Furthermore, a truth-table degree consisting of three positive degrees is constructed where one positive degree consists of enumerable semirecursive sets, one of coenumerable semirecursive sets and one of sets, which are neither enumerable nor coenumerable nor semirecursive. So Jockusch's result that there are at least three positive degrees inside a truth-table degree is optimal. The number of positive degrees inside a truth-table degree can also be some other odd integer as for example nineteen, but it is never an even finite number. (shrink)
We investigate structures recognizable by finite state automata with an input tape of length a limit ordinal. At limits, the set of states which appear unboundedly often before the limit are mapped to a limit state. We describe a method for proving non-automaticity and apply this to determine the optimal bounds for the ranks of linear orders recognized by such automata.
We extend Meyer's 1972 investigation of sets of minimal indices. Blum showed that minimal index sets are immune, and we show that they are also immune against high levels of the arithmetic hierarchy. We give optimal immunity results for sets of minimal indices with respect to the arithmetic hierarchy, and we illustrate with an intuitive example that immunity is not simply a refinement of arithmetic complexity. Of particular note here are the fact that there are three minimal index sets located (...) in Π3 − Σ3 with distinct levels of immunity and that certain immunity properties depend on the choice of underlying acceptable numbering. We show that minimal index sets are never hyperimmune; however, they can be immune against the arithmetic sets. Lastly, we investigate Turing degrees for sets of random strings defined with respect to Bagchi's size-function s. (shrink)
The truth-table degree of the set of shortest programs remains an outstanding problem in recursion theory. We examine two related sets, the set of shortest descriptions and the set of domain-random strings, and show that the truth-table degrees of these sets depend on the underlying acceptable numbering. We achieve some additional properties for the truth-table incomplete versions of these sets, namely retraceability and approximability. We give priority-free constructions of bounded truth-table chains and bounded truth-table antichains inside the truth-table complete degree (...) by identifying an acceptable set of domain-random strings within each degree. (shrink)
Weakly semirecursive sets have been introduced by Jockusch and Owings . In the present paper their investigation is pushed forward by utilizing r.e. partial orderings, which turn out to be instrumental for the study of degrees of subclasses of weakly semirecursive sets.
We prove that the continuous function${\rm{\hat \Omega }}:2^\omega \to $ that is defined via$X \mapsto \mathop \sum \limits_n 2^{ - K\left} $ for all $X \in {2^\omega }$ is differentiable exactly at the Martin-Löf random reals with the derivative having value 0; that it is nowhere monotonic; and that $\mathop \smallint \nolimits _0^1{\rm{\hat{\Omega }}}\left\,{\rm{d}}X$ is a left-c.e. $wtt$-complete real having effective Hausdorff dimension ${1 / 2}$.We further investigate the algorithmic properties of ${\rm{\hat{\Omega }}}$. For example, we show that the maximal (...) value of ${\rm{\hat{\Omega }}}$ must be random, the minimal value must be Turing complete, and that ${\rm{\hat{\Omega }}}\left \oplus X{ \ge _T}\emptyset \prime$ for every X. We also obtain some machine-dependent results, including that for every $\varepsilon > 0$, there is a universal machine V such that ${{\rm{\hat{\Omega }}}_V}$ maps every real X having effective Hausdorff dimension greater than ε to a real of effective Hausdorff dimension 0 with the property that $X{ \le _{tt}}{{\rm{\hat{\Omega }}}_V}\left$; and that there is a real X and a universal machine V such that ${{\rm{\Omega }}_V}\left$ is rational. (shrink)
We investigate connections between the syntactic and semantic distance of programs on an abstract, recursion theoretic level. For a certain rather restrictive notion of interdependency of the two kinds of distances, there remain only few and “unnatural” numberings allowing such close relationship. Weakening the requirements leads to the discovery of universal metrics such that for an arbitrary recursively enumerable family of functions a numbering compatible with such a metric can uniformly be constructed. We conclude our considerations with some implications on (...) learning theory. (shrink)
In this paper, we improve a result of Seetapun and prove that above any nonzero, incomplete recursively enumerable degree a, there is a high2 r.e. degree c>ac>a witnessing that a is locally noncappable . Theorem 1.1 provides a scheme of obtaining high2 nonboundings , as all known high2 nonboundings, such as high2 degrees bounding no minimal pairs, high2 plus-cuppings, etc.
We study connections between strong reducibilities and properties of computably enumerable sets such as simplicity. We say that a class of computably enumerable sets bounded iff there is an m-incomplete computably enumerable set A such that every set in is m-reducible to A. For example, we show that the class of effectively simple sets is bounded; but the class of maximal sets is not. Furthermore, the class of computably enumerable sets Turing reducible to a computably enumerable set B is bounded (...) iff B is low2. For r = bwtt,tt,wtt and T, there is a bounded class intersecting every computably enumerable r-degree; for r = c, d and p, no such class exists. (shrink)