We present a new functional interpretation, based on a novel assignment of formulas. In contrast with Gödel’s functional “Dialectica” interpretation, the new interpretation does not care for precise witnesses of existential statements, but only for bounds for them. New principles are supported by our interpretation, including the FAN theorem, weak König’s lemma and the lesser limited principle of omniscience. Conspicuous among these principles are also refutations of some laws of classical logic. Notwithstanding, we end up discussing some applications of the (...) new interpretation to theories of classical arithmetic and analysis. (shrink)
It is well known that Frege's system in the Grundgesetze der Arithmetik is formally inconsistent. Frege's instantiation rule for the second-order universal quantifier makes his system, except for minor differences, full (i.e., with unrestricted comprehension) second-order logic, augmented by an abstraction operator that abides to Frege's basic law V. A few years ago, Richard Heck proved the consistency of the fragment of Frege's theory obtained by restricting the comprehension schema to predicative formulae. He further conjectured that the more encompassing Δ₁¹-comprehension (...) schema would already be inconsistent. In the present paper, we show that this is not the case. (shrink)
We construct a weak second-order theory of arithmetic which includes Weak König's Lemma (WKL) for trees defined by bounded formulae. The provably total functions (with Σ b 1 -graphs) of this theory are the polynomial time computable functions. It is shown that the first-order strength of this version of WKL is exactly that of the scheme of collection for bounded formulae.
We show how to interpret intuitionistic propositional logic into a predicative second-order intuitionistic propositional system having only the conditional and the universal second-order quantifier. We comment on this fact. We argue that it supports the legitimacy of using classical logic in a predicative setting, even though the philosophical cast of predicativism is nonrealistic. We also note that the absence of disjunction and existential quantifications allows one to have a process of normalization of proofs that avoids the use of "commuting conversions.".
We introduce a herbrandized functional interpretation of a first-order semi-intuitionistic extension of Heyting Arithmetic and study its main properties. We then extend the interpretation to a certain system of second-order arithmetic which includes a (classically false) formulation of the FAN principle and weak König's lemma. It is shown that any first-order formula provable in this system is classically true. It is perhaps worthy of note that, in our interpretation, second-order variables are interpreted by finite sets of natural numbers.
It has been known for six years that the restriction of Girard's polymorphic system $\text{\bfseries\upshape F}$ to atomic universal instantiations interprets the full fragment of the intuitionistic propositional calculus. We firstly observe that Tait's method of “convertibility” applies quite naturally to the proof of strong normalization of the restricted Girard system. We then show that each $\beta$-reduction step of the full intuitionistic propositional calculus translates into one or more $\beta\eta$-reduction steps in the restricted Girard system. As a consequence, we obtain (...) a novel and perspicuous proof of the strong normalization property for the full intuitionistic propositional calculus. It is noticed that this novel proof bestows a crucial role to $\eta$-conversions. (shrink)
Commuting conversions were introduced in the natural deduction calculus as ad hoc devices for the purpose of guaranteeing the subformula property in normal proofs. In a well known book, Jean-Yves Girard commented harshly on these conversions, saying that ‘one tends to think that natural deduction should be modified to correct such atrocities.’ We present an embedding of the intuitionistic predicate calculus into a second-order predicative system for which there is no need for commuting conversions. Furthermore, we show that the redex (...) and the conversum of a commuting conversion of the original calculus translate into equivalent derivations by means of a series of bidirectional applications of standard conversions. (shrink)
It is well known that Frege's system in the Grundgesetze der Arithmetik is formally inconsistent. Frege's instantiation rule for the second-order universal quantifier makes his system, except for minor differences, full second-order logic, augmented by an abstraction operator that abides to Frege's basic law V. A few years ago, Richard Heck proved the consistency of the fragment of Frege's theory obtained by restricting the comprehension schema to predicative formulae. He further conjectured that the more encompassing Δ₁¹-comprehension schema would already be (...) inconsistent. In the present paper, we show that this is not the case. (shrink)
We introduce a new typed combinatory calculus with a type constructor that, to each type σ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma $$\end{document}, associates the star type σ∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma ^*$$\end{document} of the nonempty finite subsets of elements of type σ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma $$\end{document}. We prove that this calculus enjoys the properties of strong normalization and confluence. With the aid of this star combinatory (...) calculus, we define a functional interpretation of first-order predicate logic and prove a corresponding soundness theorem. It is seen that each theorem of classical first-order logic is connected with certain formulas which are tautological in character. As a corollary, we reprove Herbrand’s theorem on the extraction of terms from classically provable existential statements. (shrink)
It is known that there is a sound and faithful translation of the full intuitionistic propositional calculus into the atomic polymorphic system F at, a predicative calculus with only two connectives: the conditional and the second-order universal quantifier. The faithfulness of the embedding was established quite recently via a model-theoretic argument based in Kripke structures. In this paper we present a purely proof-theoretic proof of faithfulness. As an application, we give a purely proof-theoretic proof of the disjunction property of the (...) intuitionistic propositional logic in which commuting conversions are not needed. (shrink)
In "'Yes" and "No'" (2000), Ian Rumfitt proposed bilateralism--a use-based account of the logical words, according to which the sense of a sentence is determined by the conditions under which it is asserted and denied. One of Rumfitt's key claims is that bilateralism can provide a justification of classical logic. This paper raises a techical problem for Rumfitt's proposal, one that seems to undermine the bilateralist programme.
We present a functional interpretation of Peano arithmetic that uses Gödel’s computable functionals and which systematically injects uniformities into the statements of finite-type arithmetic. As a consequence, some uniform boundedness principles are interpreted while maintaining unmoved the -sentences of arithmetic. We explain why this interpretation is tailored to yield conservation results.
This paper develops the very basic notions of analysis in a weak second-order theory of arithmetic BTFA whose provably total functions are the polynomial time computable functions. We formalize within BTFA the real number system and the notion of a continuous real function of a real variable. The theory BTFA is able to prove the intermediate value theorem, wherefore it follows that the system of real numbers is a real closed ordered field. In the last section of the paper, we (...) show how to interpret the theory BTFA in Robinson's theory of arithmetic Q. This fact entails that the elementary theory of the real closed ordered fields is interpretable in Q. (shrink)
We define a notion of realizability, based on a new assignment of formulas, which does not care for precise witnesses of existential statements, but only for bounds for them. The novel form of realizability supports a very general form of the FAN theorem, refutes Markov's principle but meshes well with some classical principles, including the lesser limited principle of omniscience and weak König's lemma. We discuss some applications, as well as some previous results in the literature.
In Frege’s logicism, numbers are logical objects in the sense that they are extensions of certain concepts. Frege’s logical system is inconsistent, but Richard Heck showed that its restriction to predicative quantification is consistent. This predicative fragment is, nevertheless, too weak to develop arithmetic. In this paper, I will consider an extension of Heck’s system with impredicative quantifiers. In this extended system, both predicative and impredicative quantifiers co-exist but it is only permissible to take extensions of concepts formulated in the (...) predicative fragment of the language. This system is consistent. Moreover, it proves the principle of reducibility applied to concepts true of only finitely many objects. With the aid of this form of reducibility, it is possible to develop arithmetic in a thoroughly Fregean way. (shrink)
In this article we study applications of the bounded functional interpretation to theories of feasible arithmetic and analysis. The main results show that the novel interpretation is sound for considerable generalizations of weak König’s Lemma, even in the presence of very weak induction. Moreover, when this is combined with Cook and Urquhart’s variant of the functional interpretation, one obtains effective versions of conservation results regarding weak König’s Lemma which have been so far only obtained non-constructively.
Edward Nelson published in 1986 a book defending an extreme formalist view of mathematics according to which there is animpassable barrierin the totality of exponentiation. On the positive side, Nelson embarks on a program of investigating how much mathematics can be interpreted in Raphael Robinson's theory of arithmetic. In the shadow of this program, some very nice logical investigations and results were produced by a number of people, not only regarding what can be interpreted inbut also what cannot be so (...) interpreted. We explain some of these results and rely on them to discuss Nelson's position. (shrink)
In the course of ten short sections, we comment on Gödel's seminal dialectica paper of fifty years ago and its aftermath. We start by suggesting that Gödel's use of functionals of finite type is yet another instance of the realistic attitude of Gödel towards mathematics, in tune with his defense of the postulation of ever increasing higher types in foundational studies. We also make some observations concerning Gödel's recasting of intuitionistic arithmetic via the dialectica interpretation, discuss the extra principles that (...) the interpretation validates and comment on extensionality and higher order equality. The latter sections focus on the role of majorizability considerations within the dialectica and related interpretations for extracting computational information from ordinary proofs in mathematics. (shrink)
Every model of IΔ0 is the tally part of a model of the stringlanguage theory Th-FO . We show how to “smoothly” introduce in Th-FO the binary length function, whereby it is possible to make exponential assumptions in models of Th-FO. These considerations entail that every model of IΔ0 + ¬exp is a proper initial segment of a model of Th-FO and that a modicum of bounded collection is true in these models.
Edward Nelson published in 1986 a book defending an extreme formalist view of mathematics according to which there is an impassable barrier in the totality of exponentiation. On the positive side, Nelson embarks on a program of investigating how much mathematics can be interpreted in Raphael Robinson's theory of arithmetic Q. In the shadow of this program, some very nice logical investigations and results were produced by a number of people, not only regarding what can be interpreted in Q but (...) also what cannot be so interpreted. We explain some of these results and rely on them to discuss Nelson's position. (shrink)
Let be the fragment of elementary Peano arithmetic in which induction is restricted to -formulas. More than three decades ago, Parsons showed that the provably total functions of are exactly the primitive recursive functions. In this paper, we observe that Parsons' result is a consequence of Herbrand's theorem concerning the -consequences of universal theories. We give a self-contained proof requiring only basic knowledge of mathematical logic.
Frege’s Grundgesetze der Arithmetik is formally inconsistent. This system is, except for minor differences, second-order logic together with an abstraction operator governed by Frege’s Axiom V. A few years ago, Richard Heck showed that the ramified predicative second-order fragment of the Grundgesetze is consistent. In this paper, we show that the above fragment augmented with the axiom of reducibility for concepts true of only finitely many individuals is still consistent, and that elementary Peano arithmetic (and more) is interpretable in this (...) extended system. (shrink)
We formulate schemes and of the “typical” ∀∑ 1 b -sentences that are provable in T 2 1, respectively T 2 2. As an application, we reprove a recent result of Buss and Krajíček which describes witnesses for the ∀∑ 1 b -sentences provable in T 2 1 in terms of solutions to PLS-problems.
In finite type arithmetic, the real numbers are represented by rapidly converging Cauchy sequences of rational numbers. Ulrich Kohlenbach introduced abstract types for certain structures such as metric spaces, normed spaces, Hilbert spaces, etc. With these types, the elements of the spaces are given directly, not through the mediation of a representation. However, these abstract spaces presuppose the real numbers. In this paper, we show how to set up an abstract type for the real numbers. The appropriateness of our construction (...) works in tandem with the bounded functional interpretation. (shrink)
In the course of ten short sections, we comment on Gödel's seminal dialectica paper of fifty years ago and its aftermath. We start by suggesting that Gödel's use of functionals of finite type is yet another instance of the realistic attitude of Gödel towards mathematics, in tune with his defense of the postulation of ever increasing higher types in foundational studies. We also make some observations concerning Gödel's recasting of intuitionistic arithmetic via the dialectica interpretation, discuss the extra principles that (...) the interpretation validates and comment on extensionality and higher order equality. The latter sections focus on the role of majorizability considerations within the dialectica and related interpretations for extracting computational information from ordinary proofs in mathematics. (shrink)
We introduce a class of models of the bounded arithmetic theoryPV n . These models, which are generated by their tally part, have a curious feature: they have end-extensions or satisfyB∑ n b only in case they are closed under exponentiation. As an application, we show that if then the polynomial hierarchy does not collapse.
We formulate schemes and of the “typical” ∀∑ 1 b -sentences that are provable in T 2 1 , respectively T 2 2 . As an application, we reprove a recent result of Buss and Krajíček which describes witnesses for the ∀∑ 1 b -sentences provable in T 2 1 in terms of solutions to PLS-problems.
We prove that the (non-intuitionistic) law of the double negation shift has a bounded functional interpretation with bar recursive functionals of finite type. As an application. we show that full numerical comprehension is compatible with the uniformities introduced by the characteristic principles of the bounded functional interpretation for the classical case.
It is well-known that an element of a commutative ring with identity is nilpotent if, and only if, it lies in every prime ideal of the ring. A modification of this fact is amenable to a very simple proof mining analysis. We formulate a quantitative version of this modification and obtain an explicit bound. We present an application. This proof mining analysis is the leitmotif for some comments and observations on the methodology of computational extraction. In particular, we emphasize that (...) the formulation of quantitative versions of ordinary mathematical theorems is of independent interest from proof mining metatheorems. (shrink)
The LNCS series reports state-of-the-art results in computer science research, development, and education, at a high level and in both printed and electronic form.
Recently, Feferman and Hellman (and Aczel) showed how to establish the existence and categoricity of a natural number system by predicative means given the primitive notion of a finite set of individuals and given also a suitable pairing function operating on individuals. This short paper shows that this existence and categoricity result does not rely (even indirectly) on finite-set induction, thereby sustaining Feferman and Hellman's point in favor of the view that natural number induction can be derived from a very (...) weak fragment of finite-set theory, so weak that finite-set induction is not assumed. Many basic features of finiteness fail to hold in these weak fragments, conspicuously the principle that finite sets are in one-one correspondence with a proper initial segments of a (any) natural number structure. In the last part of the paper, we propose two prima facie evident principles for finite sets that, when added to these fragments, entail this principle. (shrink)
Frege’s theory is inconsistent. However, the predicative version of Frege’s system is consistent. This was proved by Richard Heck in 1996 using a model-theoretic argument. In this paper, we give a finitistic proof of this consistency result. As a consequence, Heck’s predicative theory is rather weak. We also prove the finitistic consistency of the extension of Heck’s theory to $\Delta^{1}_{1}$-comprehension and of Heck’s ramified predicative second-order system.
Leo Harrington showed that the second-order theory of arithmetic WKL 0 is ${\Pi^1_1}$ -conservative over the theory RCA 0. Harrington’s proof is model-theoretic, making use of a forcing argument. A purely proof-theoretic proof, avoiding forcing, has been eluding the efforts of researchers. In this short paper, we present a proof of Harrington’s result using a cut-elimination argument.
We argue that the basic notions of mathematics can only be properly formulated in an informal way. Mathematical notions transcend formalizations and their study involves the consideration of other mathematical notions. We explain the fundamental role of categoricity theorems in making these studies possible. We arrive at the conclusion that the enterprise of mathematics is not infallible and that it ultimately relies on degrees of evidence.
We study, within the framework of intuitionistic logic, two well-known general results of bounded arithmetic. Firstly, Parikh's theorem on the existence of bounding terms for the provably total functions. Secondly, the result which states that adding the scheme of bounded collection to bounded theories does not yield new II2 consequences.