Results for 'Everettian quantum mechanics'

1000+ found
Order:
  1. Fundamentality and Levels in Everettian Quantum Mechanics.Alastair Wilson - 2022 - In Valia Allori (ed.), Quantum Mechanics and Fundamentality: Naturalizing Quantum Theory between Scientific Realism and Ontological Indeterminacy. Cham: Springer.
    Distinctions in fundamentality between different levels of description are central to the viability of contemporary decoherence-based Everettian quantum mechanics (EQM). This approach to quantum theory characteristically combines a determinate fundamental reality (one universal wave function) with an indeterminate emergent reality (multiple decoherent worlds). In this chapter I explore how the Everettian appeal to fundamentality and emergence can be understood within existing metaphysical frameworks, identify grounding and concept fundamentality as promising theoretical tools, and use them to (...)
    Direct download  
     
    Export citation  
     
    Bookmark   4 citations  
  2.  89
    Everettian quantum mechanics and physical probability: Against the principle of “State Supervenience”.Lina Jansson - 2016 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 53:45-53.
    Everettian quantum mechanics faces the challenge of how to make sense of probability and probabilistic reasoning in a setting where there is typically no unique outcome of measurements. Wallace has built on a proof by Deutsch to argue that a notion of probability can be recovered in the many worlds setting. In particular, Wallace argues that a rational agent has to assign probabilities in accordance with the Born rule. This argument relies on a rationality constraint that Wallace (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   7 citations  
  3. Everettian quantum mechanics without branching time.Alastair Wilson - 2012 - Synthese 188 (1):67-84.
    In this paper I assess the prospects for combining contemporary Everettian quantum mechanics (EQM) with branching-time semantics in the tradition of Kripke, Prior, Thomason and Belnap. I begin by outlining the salient features of ‘decoherence-based’ EQM, and of the ‘consistent histories’ formalism that is particularly apt for conceptual discussions in EQM. This formalism permits of both ‘branching worlds’ and ‘parallel worlds’ interpretations; the metaphysics of EQM is in this sense underdetermined by the physics. A prominent argument due (...)
    Direct download (6 more)  
     
    Export citation  
     
    Bookmark   16 citations  
  4. Everettian Quantum Mechanics and the Metaphysics of Modality.Jacqueline Harding - 2021 - British Journal for the Philosophy of Science 72 (4):939-964.
    This article sits at a point of intersection between the philosophy of physics and the metaphysics of modality. There are clear similarities between Everettian quantum mechanics and various modal metaphysical theories, but there have hitherto been few attempts at exploring how the two topics relate. In this article, I build on a series of recent papers by Wilson ([2011], [2012], [2013]), who argues that Everettian quantum mechanics’ connections with traditional modal metaphysics are vital in (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  5.  59
    Mad-Dog Everettianism: Quantum Mechanics at Its Most Minimal.Sean M. Carroll & Ashmeet Singh - 2019 - In Anthony Aguirre, Brendan Foster & Zeeya Merali (eds.), What is Fundamental? Cham: Springer Verlag. pp. 95-104.
    To the best of our current understanding, quantum mechanics is part of the most fundamental picture of the universe. It is natural to ask how pure and minimal this fundamental quantum description can be. The simplest quantum ontology is that of the Everett or Many-Worlds interpretation, based on a vector in Hilbert space and a Hamiltonian. Typically one also relies on some classical structure, such as space and local configuration variables within it, which then gets promoted (...)
    Direct download  
     
    Export citation  
     
    Bookmark   20 citations  
  6. Metaphysical indeterminacy in Everettian quantum mechanics.David Glick & Baptiste Le Bihan - 2024 - European Journal for Philosophy of Science 14 (3):1-22.
    The question of whether Everettian quantum mechanics (EQM) justifies the existence of metaphysical indeterminacy has recently come to the fore. Metaphysical indeterminacy has been argued to emerge from three sources: coherent superpositions, the indefinite number of branches in the quantum multiverse and the nature of these branches. This paper reviews the evidence and concludes that those arguments don’t rely on EQM alone and rest on metaphysical auxiliary assumptions that transcend the physics of EQM. We show how (...)
    Direct download (6 more)  
     
    Export citation  
     
    Bookmark  
  7. Objective Probability in Everettian Quantum Mechanics.Alastair Wilson - 2013 - British Journal for the Philosophy of Science 64 (4):709-737.
    David Wallace has given a decision-theoretic argument for the Born Rule in the context of Everettian quantum mechanics. This approach promises to resolve some long-standing problems with probability in EQM, but it has faced plenty of resistance. One kind of objection charges that the requisite notion of decision-theoretic uncertainty is unavailable in the Everettian picture, so that the argument cannot gain any traction; another kind of objection grants the proof’s applicability and targets the premises. In this (...)
    Direct download (10 more)  
     
    Export citation  
     
    Bookmark   24 citations  
  8. The Probability Problem in Everettian Quantum Mechanics Persists.F. Dizadji-Bahmani - 2013 - British Journal for the Philosophy of Science (2):axt035.
    Everettian quantum mechanics results in ‘multiple, emergent, branching quasi-classical realities’ . The possible outcomes of measurement as per ‘orthodox’ quantum mechanics are, in EQM, all instantiated. Given this metaphysics, Everettians face the ‘probability problem’—how to make sense of probabilities and recover the Born rule. To solve the probability problem, Wallace, following Deutsch , has derived a quantum representation theorem. I argue that Wallace’s solution to the probability problem is unsuccessful, as follows. First, I examine (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   14 citations  
  9. Whence deep realism for Everettian quantum mechanics?Raoni Wohnrath Arroyo & Jonas R. Becker Arenhart - 2022 - Foundations of Physics 52 (6):121.
    ‘Shallow’ and ‘deep’ versions of scientific realism may be distinguished as follows: the shallow realist is satisfied with belief in the existence of the posits of our best scientific theories; by contrast, deep realists claim that realism can be legitimate only if such entities are described in metaphysical terms. We argue that this methodological discussion can be fruitfully applied in Everettian quantum mechanics, specifically on the debate concerning the existence of worlds and the recent dispute between (...) actualism and quantum modal realism. After presenting what is involved in such dispute, we point to a dilemma for realists: either we don’t have the available metaphysical tools to answer the deep realist’s demands, and realism is not justified in this case, or such demands of metaphysical dressing are not mandatory for scientific realism, and deep versions of realism are not really required. (shrink)
    Direct download (9 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  10.  73
    The Probability Problem in Everettian Quantum Mechanics Persists.Foad Dizadji-Bahmani - 2015 - British Journal for the Philosophy of Science 66 (2):257-283.
    Everettian quantum mechanics (EQM) results in ‘multiple, emergent, branching quasi-classical realities’ (Wallace [2012]). The possible outcomes of measurement as per ‘orthodox’ quantum mechanics are, in EQM, all instantiated. Given this metaphysics, Everettians face the ‘probability problem’—how to make sense of probabilities and recover the Born rule. To solve the probability problem, Wallace, following Deutsch ([1999]), has derived a quantum representation theorem. I argue that Wallace’s solution to the probability problem is unsuccessful, as follows. First, (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   12 citations  
  11. Macroscopic ontology in Everettian quantum mechanics.Alastair Wilson - 2011 - Philosophical Quarterly 61 (243):363-382.
    Simon Saunders and David Wallace have proposed an attractive semantics for interpreting linguistic communities embedded in an Everettian multiverse. It provides a charitable interpretation of our ordinary talk about the future, and allows us to retain a principle of bivalence for propositions and to retain the law of excluded middle in the logic of propositions about the future. But difficulties arise when it comes to providing an appropriate account of the metaphysics of macroscopic objects and events. I evaluate various (...)
    Direct download (6 more)  
     
    Export citation  
     
    Bookmark   23 citations  
  12. Probability in Everettian Quantum Mechanics.Peter J. Lewis - 2010 - Manuscrito 33 (1):285--306.
    The main difficulty facing no-collapse theories of quantum mechanics in the Everettian tradition concerns the role of probability within a theory in which every possible outcome of a measurement actually occurs. The problem is two-fold: First, what do probability claims mean within such a theory? Second, what ensures that the probabilities attached to measurement outcomes match those of standard quantum mechanics? Deutsch has recently proposed a decision-theoretic solution to the second problem, according to which agents (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   16 citations  
  13. Self-locating Uncertainty and the Origin of Probability in Everettian Quantum Mechanics.Charles T. Sebens & Sean M. Carroll - 2016 - British Journal for the Philosophy of Science (1):axw004.
    A longstanding issue in attempts to understand the Everett (Many-Worlds) approach to quantum mechanics is the origin of the Born rule: why is the probability given by the square of the amplitude? Following Vaidman, we note that observers are in a position of self-locating uncertainty during the period between the branches of the wave function splitting via decoherence and the observer registering the outcome of the measurement. In this period it is tempting to regard each branch as equiprobable, (...)
    Direct download (7 more)  
     
    Export citation  
     
    Bookmark   48 citations  
  14. Probability in Everettian quantum mechanics.Hilary Greaves - unknown
    (a) How to design a nuclear power plant 3. Deutsch/Wallace solution to the practical problem (a) Argue that the rational Everettian agent makes decisions by maximizing expected utility, where the expectation value is an average over branches 4. The semantics of branching - two options..
     
    Export citation  
     
    Bookmark  
  15.  34
    Analysis of Wallace’s Proof of the Born Rule in Everettian Quantum Mechanics II: Concepts and Axioms.André L. G. Mandolesi - 2019 - Foundations of Physics 49 (1):24-52.
    Having analyzed the formal aspects of Wallace’s proof of the Born rule, we now discuss the concepts and axioms upon which it is built. Justification for most axioms is shown to be problematic, and at times contradictory. Some of the problems are caused by ambiguities in the concepts used. We conclude the axioms are not reasonable enough to be taken as mandates of rationality in Everettian Quantum Mechanics. This invalidates the interpretation of Wallace’s result as meaning it (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  16. Measurement outcomes and probability in Everettian quantum mechanics.David J. Baker - 2007 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 38 (1):153-169.
    The decision-theoretic account of probability in the Everett or many-worlds interpretation, advanced by David Deutsch and David Wallace, is shown to be circular. Talk of probability in Everett presumes the existence of a preferred basis to identify measurement outcomes for the probabilities to range over. But the existence of a preferred basis can only be established by the process of decoherence, which is itself probabilistic.
    Direct download (9 more)  
     
    Export citation  
     
    Bookmark   34 citations  
  17.  21
    Email: Unruh@ physics. Ubc. ca.is Quantum Mechanics Non-Local - 2002 - In T. Placek & J. Butterfield (eds.), Non-Locality and Modality. Kluwer Academic Publishers.
  18. The human story behind Everettian quantum mechanics: Peter Byrne: The many worlds of Hugh Everett III: Multiple universes, mutual assured destruction, and the meltdown of a nuclear family. Oxford: Oxford University Press, 456pp, £25.00 HB. [REVIEW]Alastair Wilson - 2011 - Metascience 21 (1):143-146.
    The human story behind Everettian quantum mechanics Content Type Journal Article Pages 1-4 DOI 10.1007/s11016-010-9510-4 Authors Alastair Wilson, University College, Oxford, OX1 4BH UK Journal Metascience Online ISSN 1467-9981 Print ISSN 0815-0796.
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark  
  19.  37
    Measurement outcomes and probability in Everettian quantum mechanics.David Baker - 2006 - Studies in History and Philosophy of Modern Physics 38 (1):153-169.
    The decision-theoretic account of probability in the Everett or many-worlds interpretation, advanced by David Deutsch and David Wallace, is shown to be circular. Talk of probability in Everett presumes the existence of a preferred basis to identify measurement outcomes for the probabilities to range over. But the existence of a preferred basis can only be established by the process of decoherence, which is itself probabilistic.
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   34 citations  
  20.  51
    Analysis of Wallace’s Proof of the Born Rule in Everettian Quantum Mechanics: Formal Aspects.André L. G. Mandolesi - 2018 - Foundations of Physics 48 (7):751-782.
    To solve the probability problem of the Many Worlds Interpretation of Quantum Mechanics, D. Wallace has presented a formal proof of the Born rule via decision theory, as proposed by D. Deutsch. The idea is to get subjective probabilities from rational decisions related to quantum measurements, showing the non-probabilistic parts of the quantum formalism, plus some rational constraints, ensure the squared modulus of quantum amplitudes play the role of such probabilities. We provide a new presentation (...)
    Direct download (6 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  21.  26
    Everettian Interpretations of Quantum Mechanics.Christina Conroy - 2016 - Internet Encyclopedia of Philosophy.
    Everettian Interpretations of Quantum Mechanics Between the 1920s and the 1950s, the mathematical results of quantum mechanics were interpreted according to what is often referred to as “the standard interpretation” or the “Copenhagen interpretation.” This interpretation is known as the “collapse interpretation" because it supposes that an observer external to a system causes the system, … Continue reading Everettian Interpretations of Quantum Mechanics →.
    Direct download  
     
    Export citation  
     
    Bookmark  
  22. A Wittgensteinian demystification of an Everettian interpretation of quantum mechanics.François-Igor Pris - forthcoming - APRIORI. Серия: Гуманитарные науки.
    No categories
     
    Export citation  
     
    Bookmark  
  23.  12
    A Wittgensteinian demystification of an Everettian interpretation of quantum mechanics.Francois-Igor Pris - 2016 - Philosophy of Science (Novosibirsk) 68 (1):54-85.
    No categories
    Direct download  
     
    Export citation  
     
    Bookmark  
  24. Nonlocality in Everettian Accounts of Quantum Mechanics.Laura Felline - 2007 - Isonomía. Revista de Teoría y Filosofía Del Derecho.
  25. Energy Non-conservation in Quantum Mechanics.Sean M. Carroll & Jackie Lodman - 2021 - Foundations of Physics 51 (4):1-15.
    We study the conservation of energy, or lack thereof, when measurements are performed in quantum mechanics. The expectation value of the Hamiltonian of a system changes when wave functions collapse in accordance with the standard textbook treatment of quantum measurement, but one might imagine that the change in energy is compensated by the measuring apparatus or environment. We show that this is not true; the change in the energy of a state after measurement can be arbitrarily large, (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  26. Two dogmas about quantum mechanics.Jeffrey Bub & Itamar Pitowsky - 2007 - In Simon Saunders, Jonathan Barrett, Adrian Kent & David Wallace (eds.), Many Worlds?: Everett, Quantum Theory & Reality. Oxford University Press.
    We argue that the intractable part of the measurement problem -- the 'big' measurement problem -- is a pseudo-problem that depends for its legitimacy on the acceptance of two dogmas. The first dogma is John Bell's assertion that measurement should never be introduced as a primitive process in a fundamental mechanical theory like classical or quantum mechanics, but should always be open to a complete analysis, in principle, of how the individual outcomes come about dynamically. The second dogma (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   31 citations  
  27.  14
    Everettian Mechanics with Hyperfinitely Many Worlds.Jeffrey Barrett & Isaac Goldbring - 2022 - Erkenntnis 89 (4):1-20.
    The present paper shows how one might model Everettian quantum mechanics using hyperfinitely many worlds. A hyperfinite model allows one to consider idealized measurements of observables with continuous-valued spectra where different outcomes are associated with possibly infinitesimal probabilities. One can also prove hyperfinite formulations of Everett’s limiting relative-frequency and randomness properties, theorems he considered central to his formulation of quantum mechanics. Finally, this model provides an intuitive framework in which to consider no-collapse formulations of (...) mechanics more generally. (shrink)
    No categories
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  28.  6
    Everettian Mechanics with Hyperfinitely Many Worlds.Jeffrey Barrett & Isaac Goldbring - 2024 - Erkenntnis 89 (4):1367-1386.
    The present paper shows how one might model Everettian quantum mechanics using hyperfinitely many worlds. A hyperfinite model allows one to consider idealized measurements of observables with continuous-valued spectra where different outcomes are associated with possibly infinitesimal probabilities. One can also prove hyperfinite formulations of Everett’s limiting relative-frequency and randomness properties, theorems he considered central to his formulation of quantum mechanics. Finally, this model provides an intuitive framework in which to consider no-collapse formulations of (...) mechanics more generally. (shrink)
    No categories
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  29. The Argument from Locality for Many Worlds Quantum Mechanics.Alyssa Ney - forthcoming - Journal of Philosophy.
    One motivation for preferring the many worlds interpretation of quantum mechanics over realist rivals, such as collapse and hidden variables theories, is that the interpretation is able to preserve locality (in the sense of no action at a distance) in a way these other theories cannot. The primary goal of this paper is to make this argument for the many worlds interpretation precise, in a way that does not rely on controversial assumptions about the metaphysics of many worlds.
    Direct download  
     
    Export citation  
     
    Bookmark  
  30.  77
    Against the empirical viability of the Deutsch–Wallace–Everett approach to quantum mechanics.Richard Dawid & Karim P. Y. Thébault - 2014 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 47:55-61.
    The subjective Everettian approach to quantum mechanics presented by Deutsch and Wallace fails to constitute an empirically viable theory of quantum phenomena. The decision theoretic implementation of the Born rule realized in this approach provides no basis for rejecting Everettian quantum mechanics in the face of empirical data that contradicts the Born rule. The approach of Greaves and Myrvold, which provides a subjective implementation of the Born rule as well but derives it from (...)
    Direct download (7 more)  
     
    Export citation  
     
    Bookmark   9 citations  
  31. A thirder and an Everettian: A reply to Lewis's 'Quantum Sleeping Beauty'.David Papineau & Víctor Durà-Vilà - 2009 - Analysis 69 (1):78-86.
    Since the publication of Elga's seminal paper in 2000, the Sleeping Beauty paradox has been the source of much discussion, particularly in this journal. Over the past few decades the Everettian interpretation of quantum mechanics 1 has also been much debated. There is an interesting connection between the way these two topics raise issues about subjective probability assignments.This connection is often alluded to, but as far as we know Peter J. Lewis's ‘Quantum Sleeping Beauty’ is the (...)
    Direct download (11 more)  
     
    Export citation  
     
    Bookmark   14 citations  
  32.  36
    Everettian theory as pure wave mechanics plus a no-collapse probability postulate.Paul Tappenden - 2019 - Synthese 198 (7):6375-6402.
    Proposed derivations of the Born rule for Everettian theory are controversial. I argue that they are unnecessary but may provide justification for a simplified version of the Principal Principle. It’s also unnecessary to replace Everett’s idea that a subject splits in measurement contexts with the idea that subjects have linear histories which partition Many worlds? Everett, quantum theory, and reality, Oxford University Press, Oxford, pp 181–205, 2010; Wallace in The emergent multiverse, Oxford University Press, Oxford, 2012, Chapter 7; (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  33.  12
    What Makes a Quantum Physics Belief Believable? Many‐Worlds Among Six Impossible Things Before Breakfast.Shaun C. Henson - 2023 - Zygon 58 (1):203-224.
    An extraordinary, if circumscribed, positive shift has occurred since the mid-twentieth century in the perceived status of Hugh Everett III's 1956 theory of the universal wave function of quantum mechanics, now widely called the Many-Worlds Interpretation (MWI). Everett's starkly new interpretation denied the existence of a separate classical realm, contending that the experimental data can be seen as presenting a state vector for the whole universe. Since there is no state vector collapse, reality as a whole is strictly (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  34. Everettian Confirmation and Sleeping Beauty.Alastair Wilson - 2013 - British Journal for the Philosophy of Science (3):axt018.
    Darren Bradley has recently appealed to observation selection effects to argue that conditionalization presents no special problem for Everettian quantum mechanics, and to defend the ‘halfer’ answer to the puzzle of Sleeping Beauty. I assess Bradley’s arguments and conclude that while he is right about confirmation in Everettian quantum mechanics, he is wrong about Sleeping Beauty. This result is doubly good news for Everettians: they can endorse Bayesian confirmation theory without qualification, but they are (...)
    Direct download (6 more)  
     
    Export citation  
     
    Bookmark   9 citations  
  35. Decoherence, Branching, and the Born Rule in a Mixed-State Everettian Multiverse.Eugene Y. S. Chua & Eddy Keming Chen - manuscript
    In Everettian quantum mechanics, justifications for the Born rule appeal to self-locating uncertainty or decision theory. Such justifications have focused exclusively on a pure-state Everettian multiverse, represented by a wave function. Recent works in quantum foundations suggest that it is viable to consider a mixed-state Everettian multiverse, represented by a (mixed-state) density matrix. Here, we develop the conceptual foundations for decoherence and branching in a mixed-state multiverse, and extend the standard Everettian justifications for (...)
    Direct download  
     
    Export citation  
     
    Bookmark  
  36.  61
    Everettian Confirmation and Sleeping Beauty.Alastair Wilson - 2014 - British Journal for the Philosophy of Science 65 (3):573-598.
    Darren Bradley has recently appealed to observation selection effects to argue that conditionalization presents no special problem for Everettian quantum mechanics, and to defend the ‘halfer’ answer to the puzzle of Sleeping Beauty. I assess Bradley’s arguments and conclude that while he is right about confirmation in Everettian quantum mechanics, he is wrong about Sleeping Beauty. This result is doubly good news for Everettians: they can endorse Bayesian confirmation theory without qualification, but they are (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   7 citations  
  37. The Quantum Doomsday Argument.Alastair Wilson - 2017 - British Journal for the Philosophy of Science 68 (2).
    If the most familiar overlapping interpretation of Everettian quantum mechanics is correct, then each of us is constantly splitting into multiple people. This consequence gives rise to the quantum doomsday argument, which threatens to draw crippling epistemic consequences from EQM. However, a diverging interpretation of EQM undermines the quantum doomsday argument completely. This appears to tell in favour of the diverging interpretation. But it is surprising that a metaphysical question that is apparently underdetermined by the (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   5 citations  
  38. Quantum Theory: An Appraisal.Bohmian Mechanics - 1995 - Boston Studies in the Philosophy of Science 184.
  39.  44
    Epistemic Separability and Everettian Branches: A Critique of Sebens and Carroll.Richard Dawid & Simon Friederich - 2022 - British Journal for the Philosophy of Science 73 (3):711-721.
    We discuss the proposal by Sebens and Carroll to derive the Born rule in Everettian quantum mechanics from a principle they call ‘ESP-QM’. We argue that the proposal fails: ESP-QM is not, as Sebens and Carroll argue, a ‘less general version’ of an independently plausible principle, ESP, and can only be motivated by the empirical success of quantum mechanics, including use of the Born rule. Therefore, ESP-QM cannot have the status of a meta-theoretical principle of (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  40. Everettian Confirmation and Sleeping Beauty: Reply to Wilson.Darren Bradley - 2015 - British Journal for the Philosophy of Science 66 (3):683-693.
    In Bradley, I offered an analysis of Sleeping Beauty and the Everettian interpretation of quantum mechanics. I argued that one can avoid a kind of easy confirmation of EQM by paying attention to observation selection effects, that halfers are right about Sleeping Beauty, and that thirders cannot avoid easy confirmation for the truth of EQM. Wilson agrees with my analysis of observation selection effects in EQM, but goes on to, first, defend Elga’s thirder argument on Sleeping Beauty (...)
    Direct download (7 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  41. Quantum probability and decision theory, revisited [2002 online-only paper].David Wallace - 2002
    An extended analysis is given of the program, originally suggested by Deutsch, of solving the probability problem in the Everett interpretation by means of decision theory. Deutsch's own proof is discussed, and alternatives are presented which are based upon different decision theories and upon Gleason's Theorem. It is argued that decision theory gives Everettians most or all of what they need from `probability'. Contact is made with Lewis's Principal Principle linking subjective credence with objective chance: an Everettian Principal Principle (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   28 citations  
  42. A Fair Deal for Everettians.David Papineau - unknown
    It is widely supposed that the Everettian account of quantum mechanics has difficulties with probability. In this paper I shall argue that those who argue against the Everettian interpretation on this basis are employing a double standard. It is certainly true that there are philosophical puzzles about probability within the Everettian theory. But I shall show that orthodox metaphysics has even worse problems with probability than Everettianism. From this perspective, orthodox metaphysicians who criticise Everettians about (...)
     
    Export citation  
     
    Bookmark   14 citations  
  43. Everettian Formulation of the Second Law of Thermodynamics.Yu Feng - manuscript
    The second law of thermodynamics is traditionally interpreted as a coarse-grained result of classical mechanics. Recently its relation with quantum mechanical processes such as decoherence and measurement has been revealed in literature. In this paper we will formulate the second law and the associated time irreversibility following Everett’s idea: systems entangled with an object getting to know the branch in which they live. Accounting for this self-locating knowledge, we get two forms of entropy: objective entropy measuring the uncertainty (...)
    Direct download  
     
    Export citation  
     
    Bookmark  
  44. Qeauty and the books: a response to Lewis’s quantum sleeping beauty problem.Daniel Peterson - 2011 - Synthese 181 (3):367-374.
    In his 2007 paper “Quantum Sleeping Beauty”, Peter Lewis poses a problem for the supporters’ of the Everett interpretation of quantum mechanics appeal to subjective probability. Lewis’s argument hinges on parallels between the traditional “sleeping beauty” problem in epistemology and a quantum variant. These two cases, Lewis argues, advocate different treatments of credences even though they share important epistemic similarities, leading to a tension between the traditional solution to the sleeping beauty problem (typically called the “thirder” (...)
    Direct download (8 more)  
     
    Export citation  
     
    Bookmark   10 citations  
  45.  92
    Why Everettians should appreciate the transactional interpretation.Ruth Kastner - unknown
    The attractive feature of the Everett approach is its admirable spirit of approaching the quantum puzzle with a Zen-like "beginner’s mind" in order to try to envision what the pure formalism might be saying about quantum reality, even if that journey leads to a strange place. It is argued that the transactional interpretation of quantum mechanics (TI), appropriately interpreted, shares the same motivation and achieves much more, with far fewer conceptual perplexities, by taking into account heretofore (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  46.  34
    On the Everettian Epistemic Problem.Hilary Greaves - 2007 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 38 (1):120-152.
    Recent work in the Everett interpretation has suggested that the problem of probability can be solved by understanding probability in terms of rationality. However, there are *two* problems relating to probability in Everett --- one practical, the other epistemic --- and the rationality-based program *directly* addresses only the practical problem. One might therefore worry that the problem of probability is only `half solved' by this approach. This paper aims to dispel that worry: a solution to the epistemic problem follows from (...)
    Direct download (6 more)  
     
    Export citation  
     
    Bookmark   29 citations  
  47. An Introduction to Many Worlds in Quantum Computation.Clare Hewitt-Horsman - 2009 - Foundations of Physics 39 (8):869-902.
    The interpretation of quantum mechanics is an area of increasing interest to many working physicists. In particular, interest has come from those involved in quantum computing and information theory, as there has always been a strong foundational element in this field. This paper introduces one interpretation of quantum mechanics, a modern ‘many-worlds’ theory, from the perspective of quantum computation. Reasons for seeking to interpret quantum mechanics are discussed, then the specific ‘neo-Everettian (...)
    Direct download (6 more)  
     
    Export citation  
     
    Bookmark   12 citations  
  48. Many worlds, the cluster-state quantum computer, and the problem of the preferred basis.Michael E. Cuffaro - 2012 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 43 (1):35-42.
    I argue that the many worlds explanation of quantum computation is not licensed by, and in fact is conceptually inferior to, the many worlds interpretation of quantum mechanics from which it is derived. I argue that the many worlds explanation of quantum computation is incompatible with the recently developed cluster state model of quantum computation. Based on these considerations I conclude that we should reject the many worlds explanation of quantum computation.
    Direct download (12 more)  
     
    Export citation  
     
    Bookmark   7 citations  
  49.  41
    Building with quantum correlations.Christopher G. Timpson & Harvey R. Brown - unknown
    'Correlations without correlata' is an influential way of thinking of quantum entanglement as a form primitive correlation which nonetheless maintains locality of quantum theory. A number of arguments have sought to suggest that such a view leads either to internal inconsistency or to conflict with the empirical predictions of quantum mechanics. Here wew explicate and provide a partial defence of the notion, arguing that these objections import unwarranted conceptions of correlation properties as hidden variables. A more (...)
    Direct download  
     
    Export citation  
     
    Bookmark   7 citations  
  50. On the Physical Explanation for Quantum Computational Speedup.Michael Cuffaro - 2013 - Dissertation, The University of Western Ontario
    The aim of this dissertation is to clarify the debate over the explanation of quantum speedup and to submit, for the reader's consideration, a tentative resolution to it. In particular, I argue, in this dissertation, that the physical explanation for quantum speedup is precisely the fact that the phenomenon of quantum entanglement enables a quantum computer to fully exploit the representational capacity of Hilbert space. This is impossible for classical systems, joint states of which must always (...)
    Direct download (7 more)  
     
    Export citation  
     
    Bookmark   2 citations  
1 — 50 / 1000